IEEE J Biomed Health Inform. 2024 Jun;28(6):3672-3682. doi: 10.1109/JBHI.2022.3218577. Epub 2024 Jun 6.
Echocardiography is essential for evaluating cardiac anatomy and function during early recognition and screening for congenital heart disease (CHD), a widespread and complex congenital malformation. However, fetal CHD recognition still faces many difficulties due to instinctive fetal movements, artifacts in ultrasound images, and distinctive fetal cardiac structures. These factors hinder capturing robust and discriminative representations from ultrasound images, resulting in CHD's low prenatal detection rate. Hence, we propose a multi-scale gated axial-transformer network (MSGATNet) to capture fetal four-chamber semantic information. Then, we propose a SPReCHD: four-chamber semantic parsing network for recognizing fetal CHD in the clinical treatment of the medical metaverse, integrating MSGATNet to segment and locate four-chamber arbitrary contours, further capturing distinguished representations for the fetal heart. Comprehensive experiments indicate that our SPReCHD is sufficient in recognizing fetal CHD, achieving a precision of 95.92%, a recall of 94%, an accuracy of 95%, and a F score of 94.95% on the test set, dramatically improving the fetal CHD's prenatal detection rate.
超声心动图对于在早期识别和筛查先天性心脏病(CHD)中评估心脏解剖结构和功能至关重要,CHD 是一种广泛且复杂的先天性畸形。然而,由于胎儿的本能运动、超声图像中的伪影以及独特的胎儿心脏结构,胎儿 CHD 的识别仍然面临许多困难。这些因素阻碍了从超声图像中捕捉到强健且具有区分度的表示,导致 CHD 的产前检出率较低。因此,我们提出了一种多尺度门控轴向变换网络(MSGATNet)来捕获胎儿四腔语义信息。然后,我们提出了一个 SPReCHD:用于在医疗元宇宙的临床治疗中识别胎儿 CHD 的四腔语义解析网络,该网络集成了 MSGATNet 来分割和定位四腔任意轮廓,进一步捕获胎儿心脏的有区别的表示。全面的实验表明,我们的 SPReCHD 充分用于识别胎儿 CHD,在测试集上的准确率为 95.92%,召回率为 94%,准确率为 95%,F 分数为 94.95%,显著提高了胎儿 CHD 的产前检出率。