Suppr超能文献

CAAFE-ResNet:一种用于直肠癌预后评估的具有通道注意力增强特征提取的残差网络。

CAAFE-ResNet: A ResNet With Channel Attention-Augmented Feature Extraction for Prognostic Assessment in Rectal Cancer.

作者信息

Lu Qing, Zhang Jiaojiao, Xue Qianwen, Ma Jinping, Fang Sheng, Ma Hui, Zhang Yulin, Zheng Longbo

机构信息

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong, China.

Qingdao Maternal & Child Health and Family Planning Service Center, Qingdao, Shandong, China.

出版信息

IET Syst Biol. 2025 Jan-Dec;19(1):e70030. doi: 10.1049/syb2.70030.

Abstract

Magnetic resonance imaging (MRI) has a pivotal role in both pretreatment staging and post-treatment evaluation of rectal cancer. This study presents an innovative deep learning model, CAAFE-ResNet18*, based on the residual neural network ResNet18*. The model features an ingeniously designed feature extraction and complementation module (i.e., CAAFE), which leverages a multiscale dilated convolution parallel architecture combined with a channel attention mechanism (CAM) to achieve multilevel information fusion, spatial feature enhancement and channel feature optimisation. This enables in-depth exploration and augmentation of multilevel downsampled features, significantly improving feature representation capability and overall performance. Testing on rectal cancer MRI data demonstrates that the CAAFE-ResNet18* model significantly outperforms convolutional neural network (CNN) backbone networks and recent state-of-the-art (SOTA) models. This result indicates that the CAAFE model, by complementing and extracting MR images of patients with locally advanced rectal cancer (LARC) features at different scales from ResNet18*, may help to identify patients who will show complete response (CR) at the end of treatment and those who will not respond to therapy (NR) at an early stage of the treatment.

摘要

磁共振成像(MRI)在直肠癌的治疗前分期和治疗后评估中都起着关键作用。本研究提出了一种基于残差神经网络ResNet18的创新深度学习模型CAAFE-ResNet18。该模型具有一个精心设计的特征提取与互补模块(即CAAFE),它利用多尺度扩张卷积并行架构结合通道注意力机制(CAM)来实现多级别信息融合、空间特征增强和通道特征优化。这使得能够对多级别下采样特征进行深入探索和增强,显著提高特征表示能力和整体性能。对直肠癌MRI数据的测试表明,CAAFE-ResNet18模型明显优于卷积神经网络(CNN)骨干网络和近期的先进(SOTA)模型。这一结果表明,CAAFE模型通过从ResNet18中对局部晚期直肠癌(LARC)患者的MR图像进行不同尺度的特征互补和提取,可能有助于在治疗早期识别出治疗结束时将显示完全缓解(CR)的患者以及对治疗无反应(NR)的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验