文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于修饰在丝网印刷碳电极上的掺杂聚吲哚/多壁碳纳米管复合材料的酶促葡萄糖传感器的计时电流检测,作为糖尿病的便携式传感装置。

Chronoampermetric detection of enzymatic glucose sensor based on doped polyindole/MWCNT composites modified onto screen-printed carbon electrode as portable sensing device for diabetes.

作者信息

Phasuksom Katesara, Sirivat Anuvat

机构信息

Conductive and Electroactive Polymers Research Unit, Petroleum and Petrochemical College, Chulalongkorn University 254 Chula 12 Phayathai Rd. Pathumwan Bangkok 10330 Thailand

出版信息

RSC Adv. 2022 Oct 6;12(44):28505-28518. doi: 10.1039/d2ra04947c. eCollection 2022 Oct 4.


DOI:10.1039/d2ra04947c
PMID:36320500
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9535471/
Abstract

Doped-polyindole (dPIn) mixed with multi-walled carbon nanotubes (MWCNTs) were coated on a screen-printed electrode to improve the electroactive surface area and current response of the chronoamperometric enzymatic glucose sensor. Glucose oxidase mixed with chitosan (CHI-GOx) was immobilized on the electrode. (3-Aminopropyl) triethoxysilane (APTES) was used as a linker between the CHI-GOx and the dPIn. The current response of the glucose sensor increased with increasing glucose concentration according to a power law relation. The sensitivity of the CHI-GOx/APTES/dPIn was 55.7 μA mM cm with an LOD (limit of detection) of 0.01 mM, where the detectable glucose concentration range was 0.01-50 mM. The sensitivity of the CHI-GOx/APTES/1.5%MWCNT-dPIn was 182.9 μA mM cm with an LOD of 0.01 mM, where the detectable glucose concentration range was 0.01-100 mM. The detectable concentration ranges of glucose well cover the glucose concentrations in urine and blood. The fabricated enzymatic glucose sensors showed high stability during a storage period of four weeks and high selectivity relative to other interferences. Moreover, the sensor was successfully demonstrated as a continuous or step-wise glucose monitoring device. The preparation method employed here was facile and suitable for large quantity production. The glucose sensor fabricated here, consisting of the three-electrode cell of SPCE, were simple to use for glucose detection. Thus, it is promising to use as a prototype for real glucose monitoring for diabetic patients in the future.

摘要

将掺杂聚吲哚(dPIn)与多壁碳纳米管(MWCNTs)混合后涂覆在丝网印刷电极上,以提高计时电流型酶促葡萄糖传感器的电活性表面积和电流响应。将葡萄糖氧化酶与壳聚糖混合(CHI-GOx)固定在电极上。(3-氨丙基)三乙氧基硅烷(APTES)用作CHI-GOx与dPIn之间的连接剂。葡萄糖传感器的电流响应根据幂律关系随葡萄糖浓度的增加而增加。CHI-GOx/APTES/dPIn的灵敏度为55.7 μA mM cm,检测限(LOD)为0.01 mM,可检测的葡萄糖浓度范围为0.01-50 mM。CHI-GOx/APTES/1.5%MWCNT-dPIn的灵敏度为182.9 μA mM cm,检测限为0.01 mM,可检测的葡萄糖浓度范围为0.01-100 mM。葡萄糖的可检测浓度范围很好地覆盖了尿液和血液中的葡萄糖浓度。所制备的酶促葡萄糖传感器在四周的储存期内表现出高稳定性,并且相对于其他干扰物具有高选择性。此外,该传感器已成功被证明可作为连续或逐步的葡萄糖监测设备。这里采用的制备方法简便,适用于大规模生产。这里制备的葡萄糖传感器由SPCE的三电极池组成,用于葡萄糖检测很简单。因此,有望在未来用作糖尿病患者实时葡萄糖监测的原型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/efd1ee665068/d2ra04947c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/5e44a38f1ee8/d2ra04947c-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/848a5c2dc84e/d2ra04947c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/5c8a7133aba0/d2ra04947c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/7d6de734b7d7/d2ra04947c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/cde4a193ff0e/d2ra04947c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/5f19f31c45eb/d2ra04947c-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/a411c09029ea/d2ra04947c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/ff0168000638/d2ra04947c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/ed532f902703/d2ra04947c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/efd1ee665068/d2ra04947c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/5e44a38f1ee8/d2ra04947c-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/848a5c2dc84e/d2ra04947c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/5c8a7133aba0/d2ra04947c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/7d6de734b7d7/d2ra04947c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/cde4a193ff0e/d2ra04947c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/5f19f31c45eb/d2ra04947c-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/a411c09029ea/d2ra04947c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/ff0168000638/d2ra04947c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/ed532f902703/d2ra04947c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0428/9535471/efd1ee665068/d2ra04947c-f8.jpg

相似文献

[1]
Chronoampermetric detection of enzymatic glucose sensor based on doped polyindole/MWCNT composites modified onto screen-printed carbon electrode as portable sensing device for diabetes.

RSC Adv. 2022-10-6

[2]
Screen-printed electrode designed with MXene/doped-polyindole and MWCNT/doped-polyindole for chronoamperometric enzymatic glucose sensor.

Heliyon. 2024-1-12

[3]
Noninvasive glucose monitoring using portable GOx-Based biosensing system.

Anal Chim Acta. 2024-1-25

[4]
Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode.

Biosens Bioelectron. 2010-8-26

[5]
Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection.

Mater Sci Eng C Mater Biol Appl. 2019-8-12

[6]
A Self-Powered Enzymatic Glucose Sensor Utilizing Bimetallic Nanoparticle Composites Modified Pencil Graphite Electrodes as Cathode.

Appl Biochem Biotechnol. 2025-2

[7]
Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis.

Appl Biochem Biotechnol. 2022-8

[8]
A Redox Cu(II)-Graphene Oxide Modified Screen Printed Carbon Electrode as a Cost-Effective and Versatile Sensing Platform for Electrochemical Label-Free Immunosensor and Non-enzymatic Glucose Sensor.

Front Chem. 2021-5-20

[9]
Glucose determination using amperometric non-enzymatic sensor based on electroactive poly(caffeic acid)@MWCNT decorated with CuO nanoparticles.

Mikrochim Acta. 2022-3-26

[10]
Non-enzymatic glucose detection with screen-printed chemiresistive sensor using green synthesised silver nanoparticle and multi-walled carbon nanotubes-zinc oxide nanofibers.

Nanotechnology. 2023-11-22

引用本文的文献

[1]
Schottky Interface Enabled Electrospun Rhodium Oxide Doped Gold for Both pH Sensing and Glucose Measurements in Neutral Buffer and Human Serum.

Langmuir. 2024-10-1

[2]
Screen-printed electrode designed with MXene/doped-polyindole and MWCNT/doped-polyindole for chronoamperometric enzymatic glucose sensor.

Heliyon. 2024-1-12

[3]
Nature-Inspired Biomolecular Corona Based on Poly(caffeic acid) as a Low Potential and Time-Stable Glucose Biosensor.

Molecules. 2023-10-26

[4]
Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells.

Polymers (Basel). 2023-9-15

[5]
FeO@Au Core-Shell Magnetic Nanoparticles for the Rapid Analysis of O157:H7 in an Electrochemical Immunoassay.

Biosensors (Basel). 2023-5-22

本文引用的文献

[1]
Understanding the endocrine disruptor and determination of bisphenol A by functional Cu-BTABB-MOF/rGO composite as facile rapid electrochemical sensor: an experimental and DFT investigation.

Anal Methods. 2022-2-3

[2]
Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors.

J Mater Chem B. 2021-10-6

[3]
Novel Aminosilane (APTES)-Grafted Polyaniline@Graphene Oxide (PANI-GO) Nanocomposite for Electrochemical Sensor.

Polymers (Basel). 2021-7-31

[4]
Flexible Enzymatic Glucose Electrochemical Sensor Based on Polystyrene-Gold Electrodes.

Micromachines (Basel). 2021-7-7

[5]
Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing.

Sensors (Basel). 2021-7-8

[6]
Development of a Glucose Sensor Based on Glucose Dehydrogenase Using Polydopamine-Functionalized Nanotubes.

Membranes (Basel). 2021-5-24

[7]
Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes.

Anal Bioanal Chem. 2021-1

[8]
Poly(9-carbazole) as a Organic Semiconductor for Enzymatic and Non-Enzymatic Glucose Sensors.

Biosensors (Basel). 2020-8-23

[9]
Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions.

Biosens Bioelectron. 2020-10-1

[10]
Recent developments in enzyme immobilization technology for high-throughput processing in food industries.

Crit Rev Food Sci Nutr. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索