Suppr超能文献

用于全局优化问题的美洲斑马优化算法。

American zebra optimization algorithm for global optimization problems.

机构信息

Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

出版信息

Sci Rep. 2023 Mar 30;13(1):5211. doi: 10.1038/s41598-023-31876-2.

Abstract

A novel bio-inspired meta-heuristic algorithm, namely the American zebra optimization algorithm (AZOA), which mimics the social behaviour of American zebras in the wild, is proposed in this study. American zebras are distinguished from other mammals by their distinct and fascinating social character and leadership exercise, which navies the baby zebras to leave the herd before maturity and join a separate herd with no family ties. This departure of the baby zebra encourages diversification by preventing intra-family mating. Moreover, the convergence is assured by the leadership exercise in American zebras, which directs the speed and direction of the group. This social lifestyle behaviour of American zebras is indigenous in nature and is the main inspiration for proposing the AZOA meta-heuristic algorithm. To examine the efficiency of the AZOA algorithm, the CEC-2005, CEC-2017, and CEC-2019 benchmark functions are considered, and compared with the several state-of-the-art meta-heuristic algorithms. The experimental outcomes and statistical analysis reveal that AZOA is capable of attaining the optimal solutions for maximum benchmark functions while maintaining a good balance between exploration and exploitation. Furthermore, numerous real-world engineering problems have been employed to demonstrate the robustness of AZOA. Finally, it is anticipated that the AZOA will accomplish domineeringly for forthcoming advanced CEC benchmark functions and other complex engineering problems.

摘要

本研究提出了一种新颖的仿生启发式元启发式算法,即美国斑马优化算法(AZOA),它模拟了野生美国斑马的社会行为。美国斑马以其独特而迷人的社会特征和领导行为与其他哺乳动物区分开来,这促使幼斑马在成熟前离开群体,加入一个没有家庭关系的独立群体。这种幼斑马的离开通过防止家族内交配来促进多样化。此外,美国斑马的领导行为确保了群体的速度和方向的收敛。美国斑马的这种社会生活方式行为是自然产生的,是提出 AZOA 元启发式算法的主要灵感来源。为了检验 AZOA 算法的效率,考虑了 CEC-2005、CEC-2017 和 CEC-2019 基准函数,并与几种最先进的元启发式算法进行了比较。实验结果和统计分析表明,AZOA 能够在探索和开发之间取得良好平衡的同时,获得最大基准函数的最优解。此外,还采用了许多实际工程问题来证明 AZOA 的稳健性。最后,预计 AZOA 将在未来的高级 CEC 基准函数和其他复杂工程问题中取得主导地位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ff/10063666/736e46d77cdd/41598_2023_31876_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验