CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
Nat Commun. 2024 May 22;15(1):4365. doi: 10.1038/s41467-024-48660-z.
Biotic-abiotic hybrid photocatalytic system is an innovative strategy to capture solar energy. Diversifying solar energy conversion products and balancing photoelectron generation and transduction are critical to unravel the potential of hybrid photocatalysis. Here, we harvest solar energy in a dual mode for CuSe nanoparticles biomineralization and seawater desalination by integrating the merits of Shewanella oneidensis MR-1 and biogenic nanoparticles. Photoelectrons generated by extracellular Se nanoparticles power CuSe synthesis through two pathways that either cross the outer membrane to activate periplasmic Cu(II) reduction or are directly delivered into the extracellular space for Cu(I) evolution. Meanwhile, photoelectrons drive periplasmic Cu(II) reduction by reversing MtrABC complexes in S. oneidensis. Moreover, the unique photothermal feature of the as-prepared CuSe nanoparticles, the natural hydrophilicity, and the linking properties of bacterium offer a convenient way to tailor photothermal membranes for solar water production. This study provides a paradigm for balancing the source and sink of photoelectrons and diversifying solar energy conversion products in biotic-abiotic hybrid platforms.
生物-非生物杂化光催化系统是一种捕获太阳能的创新策略。多样化太阳能转化产物和平衡光生电子的产生和输运对于揭示杂化光催化的潜力至关重要。在这里,我们通过整合希瓦氏菌(Shewanella oneidensis MR-1)和生物源纳米颗粒的优点,以双模式收获太阳能,用于 CuSe 纳米颗粒的生物矿化和海水淡化。胞外 Se 纳米颗粒产生的光电子通过两种途径为 CuSe 合成提供动力,一种途径是穿过外膜激活周质 Cu(II)还原,另一种途径是直接输送到细胞外空间用于 Cu(I)的演化。同时,光电子通过逆转 S. oneidensis 中的 MtrABC 复合物来驱动周质 Cu(II)还原。此外,所制备的 CuSe 纳米颗粒具有独特的光热特性、天然亲水性以及细菌的连接特性,为太阳能制水的光热膜提供了一种便捷的定制方法。本研究为平衡生物-非生物杂化平台中光生电子的源和汇以及多样化太阳能转化产物提供了一个范例。