Suppr超能文献

实验和计算研究揭示的 f. sp. 效应子的结构库。

The structural repertoire of f. sp. effectors revealed by experimental and computational studies.

机构信息

Research School of Biology, The Australian National University, Canberra, Australia.

Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, China.

出版信息

Elife. 2024 Feb 27;12:RP89280. doi: 10.7554/eLife.89280.

Abstract

Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from f. sp. (). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of tomato, and by extension plant-fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.

摘要

植物病原体分泌蛋白质,称为效应子,这些蛋白质在质外体或植物细胞内发挥作用,以促进毒力。细胞表面或细胞溶质受体对效应子的识别导致防御途径和植物免疫的激活。尽管它们很重要,但我们对真菌效应子的功能和免疫受体的识别的总体理解仍然很差。效应子通常存在的一个复杂情况是它们的序列高度多样化,并且缺乏可识别的序列基序,从而无法预测结构或功能。近年来,几项研究表明,尽管真菌效应子的序列变化很大且存在于不同的分类群中,但它们可以分为结构类别。我们使用蛋白质 X 射线晶体学,在来自 f. sp. 的木质部分泌的效应子 (SIX) 中鉴定了一个新的效应子结构类别。被识别的效应子 Avr1(SIX4)和 Avr3(SIX1)代表双域(FOLD)效应子类别的创始成员,其成员包含两个不同的结构域。使用 AlphaFold2,我们预测了 的完整 SIX 效应子库,并表明 SIX6 和 SIX13 也是 FOLD 效应子,我们通过实验验证了 SIX6 的情况。基于结构预测和比较,我们表明 FOLD 效应子存在于真菌的三个分支中,并且在病原体和共生体中扩展。进一步的结构比较表明, 在感染番茄时会分泌在感染过程中采用有限数量结构折叠的效应子。该分析还揭示了转录上共同调节的效应子对之间的结构关系。我们利用 Avr1 的结构来理解它被 I 受体识别的情况,这导致番茄产生抗病性。这项研究代表了我们对番茄的理解的重要进展,并且可以扩展到植物与真菌的相互作用,这将有助于开发新的控制和工程策略来对抗植物病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e81f/10942635/9ba15fbffcfb/elife-89280-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验