Wang Mingming, Ma Jiale, Meng Yahan, Sun Jifei, Yuan Yuan, Chuai Mingyan, Chen Na, Xu Yan, Zheng Xinhua, Li Zhenyu, Chen Wei
Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China.
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China.
Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202214966. doi: 10.1002/anie.202214966. Epub 2022 Dec 8.
Aqueous zinc-ion batteries (AZBs) show promises for large-scale energy storage. However, the zinc utilization rate (ZUR) is generally low due to side reactions in the aqueous electrolyte caused by the active water molecules. Here, we design a novel solvation structure in the electrolyte by introduction of sulfolane (SL). Theoretical calculations, molecular dynamics simulations and experimental tests show that SL remodels the primary solvation shell of Zn , which significantly reduces the side reactions of Zn anode and achieves high ZUR under large capacities. Specifically, the symmetric and asymmetric cells could achieve a maximum of ∼96 % ZUR at an areal capacity of 24 mAh cm . In a ZUR of ∼67 %, the developed Zn-V O full cell can be stably cycled for 500 cycles with an energy density of 180 Wh kg and Zn-AC capacitor is stable for 5000 cycles. This electrolyte structural engineering strategy provides new insight into achieving high ZUR of Zn anodes for high performance AZBs.
水系锌离子电池(AZBs)在大规模储能方面展现出前景。然而,由于活性水分子在水系电解质中引发的副反应,锌利用率(ZUR)通常较低。在此,我们通过引入环丁砜(SL)在电解质中设计了一种新型溶剂化结构。理论计算、分子动力学模拟和实验测试表明,SL重塑了Zn的初级溶剂化壳层,显著减少了Zn阳极的副反应,并在大容量下实现了高锌利用率。具体而言,对称和不对称电池在面积容量为24 mAh cm时可实现高达约96%的锌利用率。在约67%的锌利用率下,所开发的Zn-V₂O₅全电池可稳定循环500次,能量密度为180 Wh kg,Zn-AC电容器可稳定循环5000次。这种电解质结构工程策略为实现高性能水系锌离子电池中Zn阳极的高锌利用率提供了新的见解。