Suppr超能文献

生成对抗网络生成的脑缺血 SPECT 与真实患者的扫描图像无法区分。

Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients.

机构信息

Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.

The Russell H Morgan Department of Radiology and Radiological Sciences, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA.

出版信息

Sci Rep. 2022 Nov 5;12(1):18787. doi: 10.1038/s41598-022-23325-3.

Abstract

Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (I-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset 'A'; including CER, BG, and COR), while for dataset 'B', only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, 'B' was significantly different for normal and bilateral defect patterns (P < 0.0001, respectively), but not for unilateral ischemia (P = 0.77). Comparable results were recorded for LR, as normal and ischemia scans were significantly different relative to images acquired from real patients (P ≤ 0.01, respectively). Images provided by 'A', however, revealed comparable quantitative results when compared to real images, including normal (P = 0.8) and pathological scans (unilateral, P = 0.99; bilateral, P = 0.68) for MC. For LR, only uni- (P = 0.03), but not normal or bilateral defect scans (P ≥ 0.08) reached significance relative to images of real patients. With a minimum of only three anatomical compartments serving as stimuli, created cerebral SPECTs are indistinguishable to images from real patients. The applied FastGAN algorithm may allow to provide sufficient scan numbers in various clinical scenarios, e.g., for "data-hungry" deep learning technologies or in the context of orphan diseases.

摘要

深度卷积生成对抗网络(GAN)可用于从现有数据库中创建图像。我们应用了一种改进的轻量级 GAN(FastGAN)算法来处理脑血流 SPECT,并旨在评估该技术是否可以生成接近真实患者的图像。研究了三个解剖学水平(小脑,CER;基底节,BG;皮质,COR),共纳入 551 例正常(248 例 CER,174 例 BG,129 例 COR)和 387 例病理性脑 SPECT,这些 SPECT 使用 N-异丙基 p-I-123-碘代苯丙胺(I-IMP)进行扫描。对于后者,脑缺血性疾病包括 291 例单侧(66 例 CER,116 例 BG,109 例 COR)和 96 例双侧缺陷模式(44 例 BG,52 例 COR)。我们的模型使用三腔解剖学输入进行训练(数据集“A”;包括 CER、BG 和 COR),而对于数据集“B”,仅包含一个解剖学区域(COR)。定量分析提供了平均计数(MC)和左右(LR)半球比值,然后将其与真实图像的定量结果进行比较。对于 MC,“B”在正常和双侧缺陷模式之间存在显著差异(分别为 P<0.0001),但在单侧缺血时无差异(P=0.77)。LR 也记录了类似的结果,因为正常和缺血扫描与从真实患者获得的图像有显著差异(分别为 P≤0.01)。与真实图像相比,“A”提供的图像在定量结果上也具有可比性,包括正常(P=0.8)和病理扫描(单侧,P=0.99;双侧,P=0.68)。对于 LR,只有单侧(P=0.03),而不是正常或双侧缺陷扫描(P≥0.08)与真实患者的图像具有显著差异。仅使用三个解剖学隔间作为刺激,生成的脑 SPECT 与真实患者的图像无法区分。应用的 FastGAN 算法可以在各种临床情况下提供足够的扫描数量,例如,在“数据饥渴”的深度学习技术或在孤儿病的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7702/9637159/21775af5a404/41598_2022_23325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验