Suppr超能文献

用于模拟精神分裂症大脑结构变化的生成式人工智能模型。

Generative artificial intelligence model for simulating structural brain changes in schizophrenia.

作者信息

Yamaguchi Hiroyuki, Sugihara Genichi, Shimizu Masaaki, Yamashita Yuichi

机构信息

Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.

Department of Psychiatry, Yokohama City University, School of Medicine, Yokohama, Japan.

出版信息

Front Psychiatry. 2024 Oct 4;15:1437075. doi: 10.3389/fpsyt.2024.1437075. eCollection 2024.

Abstract

BACKGROUND

Recent advancements in generative artificial intelligence (AI) for image generation have presented significant opportunities for medical imaging, offering a promising way to generate realistic virtual medical images while ensuring patient privacy. The generation of a large number of virtual medical images through AI has the potential to augment training datasets for discriminative AI models, particularly in fields with limited data availability, such as neuroimaging. Current studies on generative AI in neuroimaging have mainly focused on disease discrimination; however, its potential for simulating complex phenomena in psychiatric disorders remains unknown. In this study, as examples of a simulation, we aimed to present a novel generative AI model that transforms magnetic resonance imaging (MRI) images of healthy individuals into images that resemble those of patients with schizophrenia (SZ) and explore its application.

METHODS

We used anonymized public datasets from the Center for Biomedical Research Excellence (SZ, 71 patients; healthy subjects [HSs], 71 patients) and the Autism Brain Imaging Data Exchange (autism spectrum disorder [ASD], 79 subjects; HSs, 105 subjects). We developed a model to transform MRI images of HSs into MRI images of SZ using cycle generative adversarial networks. The efficacy of the transformation was evaluated using voxel-based morphometry to assess the differences in brain region volumes and the accuracy of age prediction pre- and post-transformation. In addition, the model was examined for its applicability in simulating disease comorbidities and disease progression.

RESULTS

The model successfully transformed HS images into SZ images and identified brain volume changes consistent with existing case-control studies. We also applied this model to ASD MRI images, where simulations comparing SZ with and without ASD backgrounds highlighted the differences in brain structures due to comorbidities. Furthermore, simulating disease progression while preserving individual characteristics showcased the model's ability to reflect realistic disease trajectories.

DISCUSSION

The results suggest that our generative AI model can capture subtle changes in brain structures associated with SZ, providing a novel tool for visualizing brain changes in different diseases. The potential of this model extends beyond clinical diagnosis to advances in the simulation of disease mechanisms, which may ultimately contribute to the refinement of therapeutic strategies.

摘要

背景

用于图像生成的生成式人工智能(AI)的最新进展为医学成像带来了重大机遇,提供了一种在确保患者隐私的同时生成逼真虚拟医学图像的有前景的方法。通过人工智能生成大量虚拟医学图像有可能扩充用于判别式人工智能模型的训练数据集,尤其是在数据可用性有限的领域,如神经成像。目前关于神经成像中生成式人工智能的研究主要集中在疾病鉴别;然而,其在模拟精神疾病复杂现象方面的潜力仍然未知。在本研究中,作为模拟的示例,我们旨在提出一种新型生成式人工智能模型,该模型将健康个体的磁共振成像(MRI)图像转换为类似于精神分裂症(SZ)患者的图像,并探索其应用。

方法

我们使用了来自卓越生物医学研究中心(SZ患者71例;健康受试者[HSs]71例)和自闭症脑成像数据交换库(自闭症谱系障碍[ASD]患者79例;HSs 105例)的匿名公共数据集。我们开发了一个模型,使用循环生成对抗网络将HSs的MRI图像转换为SZ的MRI图像。使用基于体素的形态计量学评估转换的效果,以评估脑区体积的差异以及转换前后年龄预测的准确性。此外,还检查了该模型在模拟疾病共病和疾病进展方面的适用性。

结果

该模型成功地将HS图像转换为SZ图像,并识别出与现有病例对照研究一致的脑体积变化。我们还将此模型应用于ASD的MRI图像,其中比较有和没有ASD背景的SZ的模拟突出了共病导致的脑结构差异。此外,在保留个体特征的同时模拟疾病进展展示了该模型反映现实疾病轨迹的能力。

讨论

结果表明,我们的生成式人工智能模型可以捕捉与SZ相关的脑结构细微变化,为可视化不同疾病中的脑变化提供了一种新工具。该模型的潜力不仅限于临床诊断,还扩展到疾病机制模拟的进展,这最终可能有助于改进治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beff/11486638/c6caf0f73e1b/fpsyt-15-1437075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验