Suppr超能文献

使用基于训练输出的迁移学习方法从胸部X光片中检测新型冠状病毒肺炎

COVID-19 Detection from Chest X-rays Using Trained Output Based Transfer Learning Approach.

作者信息

Kumar Sanjay, Mallik Abhishek

机构信息

Department of Computer Science and Engineering, Delhi Technological University, New Delhi, 110042 India.

出版信息

Neural Process Lett. 2022 Oct 28:1-24. doi: 10.1007/s11063-022-11060-9.

Abstract

The recent Coronavirus disease (COVID-19), which started in 2019, has spread across the globe and become a global pandemic. The efficient and effective COVID-19 detection using chest X-rays helps in early detection and curtailing the spread of the disease. In this paper, we propose a novel Trained Output-based Transfer Learning (TOTL) approach for COVID-19 detection from chest X-rays. We start by preprocessing the Chest X-rays of the patients with techniques like denoising, contrasting, segmentation. These processed images are then fed to several pre-trained transfer learning models like InceptionV3, InceptionResNetV2, Xception, MobileNet, ResNet50, ResNet50V2, VGG16, and VGG19. We fine-tune these models on the processed chest X-rays. Then we further train the outputs of these models using a deep neural network architecture to achieve enhanced performance and aggregate the capabilities of each of them. The proposed model has been tested on four recent COVID-19 chest X-rays datasets by computing several popular evaluation metrics. The performance of our model has also been compared with various deep transfer learning models and several contemporary COVID-19 detection methods. The obtained results demonstrate the efficiency and efficacy of our proposed model.

摘要

近期始于2019年的冠状病毒病(COVID-19)已在全球蔓延,成为一场全球大流行。利用胸部X光进行高效有效的COVID-19检测有助于早期发现并遏制该疾病的传播。在本文中,我们提出了一种新颖的基于训练输出的迁移学习(TOTL)方法,用于从胸部X光检测COVID-19。我们首先使用去噪、对比度调整、分割等技术对患者的胸部X光进行预处理。然后将这些处理后的图像输入到几个预训练的迁移学习模型中,如InceptionV3、InceptionResNetV2、Xception、MobileNet、ResNet50、ResNet50V2、VGG16和VGG19。我们在处理后的胸部X光上对这些模型进行微调。然后,我们使用深度神经网络架构进一步训练这些模型的输出,以实现性能提升并整合它们各自的能力。通过计算几个常用的评估指标,我们提出的模型在四个近期的COVID-19胸部X光数据集上进行了测试。我们模型的性能还与各种深度迁移学习模型以及几种当代的COVID-19检测方法进行了比较。获得的结果证明了我们提出的模型的效率和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b3a/9616430/dd22fb221f3c/11063_2022_11060_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验