Suppr超能文献

使用深度学习进行胸部X光分类以实现COVID-19自动筛查

Chest X-ray Classification Using Deep Learning for Automated COVID-19 Screening.

作者信息

Shelke Ankita, Inamdar Madhura, Shah Vruddhi, Tiwari Amanshu, Hussain Aafiya, Chafekar Talha, Mehendale Ninad

机构信息

K. J. Somaiya College of Engineering, Vidyavihar, Mumbai, India Maharshtra 400077.

出版信息

SN Comput Sci. 2021;2(4):300. doi: 10.1007/s42979-021-00695-5. Epub 2021 May 26.

Abstract

UNLABELLED

In today's world, we find ourselves struggling to fight one of the worst pandemics in the history of humanity known as COVID-2019 caused by a coronavirus. When the virus reaches the lungs, we observe ground-glass opacity in the chest X-ray due to fibrosis in the lungs. Due to the significant differences between X-ray images of an infected and non-infected person, artificial intelligence techniques can be used to identify the presence and severity of the infection. We propose a classification model that can analyze the chest X-rays and help in the accurate diagnosis of COVID-19. Our methodology classifies the chest X-rays into four classes viz. normal, pneumonia, tuberculosis (TB), and COVID-19. Further, the X-rays indicating COVID-19 are classified on a severity-basis into mild, medium, and severe. The deep learning model used for the classification of pneumonia, TB, and normal is VGG-16 with a test accuracy of 95.9 %. For the segregation of normal pneumonia and COVID-19, the DenseNet-161 was used with a test accuracy of 98.9 %, whereas the ResNet-18 worked best for severity classification achieving a test accuracy up to 76 %. Our approach allows mass screening of the people using X-rays as a primary validation for COVID-19.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s42979-021-00695-5.

摘要

未标注

在当今世界,我们发现自己正在努力对抗人类历史上最严重的大流行病之一,即由冠状病毒引起的COVID-2019。当病毒到达肺部时,由于肺部纤维化,我们在胸部X光片中观察到磨玻璃影。由于感染者和未感染者的X光图像存在显著差异,人工智能技术可用于识别感染的存在和严重程度。我们提出了一种分类模型,该模型可以分析胸部X光片并有助于COVID-19的准确诊断。我们的方法将胸部X光片分为四类,即正常、肺炎、肺结核(TB)和COVID-19。此外,显示COVID-19的X光片根据严重程度分为轻度、中度和重度。用于肺炎、肺结核和正常分类的深度学习模型是VGG-16,测试准确率为95.9%。对于正常肺炎和COVID-19的区分,使用了DenseNet-161,测试准确率为98.9%,而ResNet-18在严重程度分类方面效果最佳,测试准确率高达76%。我们的方法允许使用X光片对人群进行大规模筛查,作为COVID-19的主要验证手段。

补充信息

在线版本包含可在10.1007/s42979-021-00695-5获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2a/8152712/fbe9019eaf06/42979_2021_695_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验