Suppr超能文献

使用胸部X光图像上的模型集成进行可推广的疾病检测。

Generalizable disease detection using model ensemble on chest X-ray images.

作者信息

Abad Maider, Casas-Roma Jordi, Prados Ferran

机构信息

Universitat Oberta de Catalunya, e-Health Center, Barcelona, Spain.

Department of Computer Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.

出版信息

Sci Rep. 2024 Mar 11;14(1):5890. doi: 10.1038/s41598-024-56171-6.

Abstract

In the realm of healthcare, the demand for swift and precise diagnostic tools has been steadily increasing. This study delves into a comprehensive performance analysis of three pre-trained convolutional neural network (CNN) architectures: ResNet50, DenseNet121, and Inception-ResNet-v2. To ensure the broad applicability of our approach, we curated a large-scale dataset comprising a diverse collection of chest X-ray images, that included both positive and negative cases of COVID-19. The models' performance was evaluated using separate datasets for internal validation (from the same source as the training images) and external validation (from different sources). Our examination uncovered a significant drop in network efficacy, registering a 10.66% reduction for ResNet50, a 36.33% decline for DenseNet121, and a 19.55% decrease for Inception-ResNet-v2 in terms of accuracy. Best results were obtained with DenseNet121 achieving the highest accuracy at 96.71% in internal validation and Inception-ResNet-v2 attaining 76.70% accuracy in external validation. Furthermore, we introduced a model ensemble approach aimed at improving network performance when making inferences on images from diverse sources beyond their training data. The proposed method uses uncertainty-based weighting by calculating the entropy in order to assign appropriate weights to the outputs of each network. Our results showcase the effectiveness of the ensemble method in enhancing accuracy up to 97.38% for internal validation and 81.18% for external validation, while maintaining a balanced ability to detect both positive and negative cases.

摘要

在医疗保健领域,对快速精确诊断工具的需求一直在稳步增长。本研究深入探讨了三种预训练卷积神经网络(CNN)架构的综合性能分析:ResNet50、DenseNet121和Inception-ResNet-v2。为确保我们方法的广泛适用性,我们精心策划了一个大规模数据集,其中包含各种胸部X光图像,包括COVID-19的阳性和阴性病例。使用单独的数据集进行内部验证(与训练图像来自同一来源)和外部验证(来自不同来源)来评估模型的性能。我们的研究发现网络效能显著下降,就准确率而言,ResNet50下降了10.66%,DenseNet121下降了36.33%,Inception-ResNet-v2下降了19.55%。DenseNet121在内部验证中取得了最佳结果,准确率最高达到96.71%,Inception-ResNet-v2在外部验证中达到了76.70%的准确率。此外,我们引入了一种模型集成方法,旨在在对来自其训练数据之外的不同来源的图像进行推理时提高网络性能。所提出的方法通过计算熵使用基于不确定性的加权,以便为每个网络的输出分配适当的权重。我们的结果表明,集成方法在提高内部验证准确率至97.38%和外部验证准确率至81.18%方面是有效的,同时保持了检测阳性和阴性病例的平衡能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab08/10928229/4cb2675aa3e1/41598_2024_56171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验