Honecker Dirk, Bender Philipp, Falke Yannic, Dresen Dominique, Kundt Matthias, Schmidt Annette M, Tschöpe Andreas, Sztucki Michael, Burghammer Manfred, Disch Sabrina
ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK.
Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany.
Nanoscale Adv. 2022 Sep 14;4(21):4535-4541. doi: 10.1039/d2na00522k. eCollection 2022 Oct 25.
The magnetic field-induced actuation of colloidal nanoparticles has enabled tremendous recent progress towards microrobots, suitable for a variety of applications including targeted drug delivery, environmental remediation, or minimally invasive surgery. Further size reduction to the nanoscale requires enhanced control of orientation and locomotion to overcome dominating viscous properties. Here, control of the coherent precession of hematite spindles a dynamic magnetic field is demonstrated using nanoscale particles. Time-resolved small-angle scattering and optical transmission measurements reveal a clear frequency-dependent variation of orientation and rotation of an entire ensemble of non-interacting hematite nanospindles. The different motion mechanisms by nanoscale spindles in bulk dispersion resemble modes that have been observed for much larger, micron-sized elongated particles near surfaces. The dynamic rotation modes promise hematite nanospindles as a suitable model system for field-induced locomotion in nanoscale magnetic robots.
胶体纳米粒子的磁场驱动最近在微型机器人领域取得了巨大进展,这种微型机器人适用于多种应用,包括靶向药物递送、环境修复或微创手术。进一步将尺寸缩小到纳米级需要加强对取向和运动的控制,以克服占主导地位的粘性特性。在这里,利用纳米级粒子展示了对赤铁矿纺锤体在动态磁场中的相干进动的控制。时间分辨小角散射和光透射测量揭示了整个非相互作用赤铁矿纳米纺锤体集合的取向和旋转明显的频率依赖性变化。纳米级纺锤体在本体分散体中的不同运动机制类似于在靠近表面的更大的微米级细长颗粒中观察到的模式。动态旋转模式使赤铁矿纳米纺锤体成为纳米级磁性机器人中磁场诱导运动的合适模型系统。