Suppr超能文献

多模态运动及磁控agents 的主动靶向热控用于生物医学应用。

Multimodal Locomotion and Active Targeted Thermal Control of Magnetic Agents for Biomedical Applications.

机构信息

Department of Electronics Convergence Engineering, Wonkwang University, Iksan, 54538, Republic of Korea.

Department of Chemical Engineering, Wonkwang University, Iksan, 54538, Republic of Korea.

出版信息

Adv Sci (Weinh). 2022 Mar;9(7):e2103863. doi: 10.1002/advs.202103863. Epub 2022 Jan 20.

Abstract

Magnetic microrobots can be miniaturized to a nanometric scale owing to their wireless actuation, thereby rendering them ideal for numerous biomedical applications. As a result, nowadays, there exist several mechano-electromagnetic systems for their actuation. However, magnetic actuation is not sufficient for implementation in biomedical applications, and further functionalities such as imaging and heating are required. This study proposes a multimodal electromagnetic system comprised of three pairs of Helmholtz coils, a pair of Maxwell coils, and a high-frequency solenoid to realize multimodal locomotion and heating control of magnetic microrobots. The system produces different configurations of magnetic fields that can generate magnetic forces and torques for the multimodal locomotion of magnetic microrobots, as well as generate magnetic traps that can control the locomotion of magnetic swarms. Furthermore, these magnetic fields are employed to control the magnetization of magnetic nanoparticles, affecting their magnetic relaxation mechanisms and diminishing their thermal properties. Thus, the system enables the control of the temperature increase of soft-magnetic materials and selective heating of magnetic microrobots at different positions, while suppressing the heating properties of magnetic nanoparticles located at undesired areas.

摘要

磁性微机器人由于其无线驱动可小型化至纳米尺度,因此非常适合许多生物医学应用。因此,目前存在几种用于驱动的机电 - 电磁系统。然而,磁性驱动不足以在生物医学应用中实施,还需要成像和加热等其他功能。本研究提出了一种由三对亥姆霍兹线圈、一对麦克斯韦线圈和一个高频螺线管组成的多模态电磁系统,以实现磁性微机器人的多模态运动和加热控制。该系统产生不同配置的磁场,可产生用于磁性微机器人多模态运动的磁力和扭矩,以及产生磁阱,以控制磁性群的运动。此外,这些磁场用于控制磁性纳米颗粒的磁化,影响其磁弛豫机制并降低其热性能。因此,该系统能够控制软磁材料的温度升高和磁性微机器人在不同位置的选择性加热,同时抑制位于不需要区域的磁性纳米颗粒的加热特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e096/8895130/cd01f6833a60/ADVS-9-2103863-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验