Suppr超能文献

铜绿假单胞菌磷酸盐转运蛋白 PitA(PA4292)通过调节质子动力势控制对氨基糖苷类抗生素的敏感性。

Pseudomonas aeruginosa Phosphate Transporter PitA (PA4292) Controls Susceptibility to Aminoglycoside Antibiotics by Regulating the Proton Motive Force.

机构信息

State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai Universitygrid.216938.7, Tianjin, China.

出版信息

Antimicrob Agents Chemother. 2022 Dec 20;66(12):e0099222. doi: 10.1128/aac.00992-22. Epub 2022 Nov 8.

Abstract

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes nosocomial infections in immunocompromised patients. β-lactam and aminoglycoside antibiotics are commonly used in the treatment of P. aeruginosa infections. Previously, we found that mutation in a gene increases bacterial resistance to β-lactam antibiotics. In this study, we demonstrated that mutation in increases bacterial susceptibility to aminoglycoside antibiotics. We further found enhanced uptake of tobramycin by the Δ mutant, which might be due to an increase of proton motive force (PMF). Sequence analysis revealed PA4292 is homologous to the Escherichia coli phosphate transporter PitA. Mutation of indeed reduces intracellular phosphate concentration. We thus named as . Although the PMF is enhanced in the Δ mutant, the intracellular ATP concentration is lower than that in the isogenic wild-type strain PA14, which might be due to lack of the ATP synthesis substrate phosphate. Overexpression of the phosphate transporter complex genes in the Δ mutant restores the intracellular phosphate concentration, PMF, ATP synthesis, and aminoglycosides resistance. In addition, growth of wild-type PA14 in a low-phosphate medium resulted in higher PMF and aminoglycoside susceptibility compared to cells grown in a high-phosphate medium. Overall, our results demonstrate the roles of PitA in phosphate transportation and reveal the relationship between intracellular phosphate and aminoglycoside susceptibility.

摘要

铜绿假单胞菌是一种机会性革兰氏阴性菌,可导致免疫功能低下的患者发生医院获得性感染。β-内酰胺类和氨基糖苷类抗生素常用于治疗铜绿假单胞菌感染。先前,我们发现一个 基因的突变会增加细菌对β-内酰胺类抗生素的耐药性。在这项研究中,我们证明了 基因的突变会增加细菌对氨基糖苷类抗生素的敏感性。我们进一步发现,Δ 突变体对妥布霉素的摄取增加,这可能是由于质子动力势(PMF)增加所致。序列分析表明,PA4292 与大肠杆菌磷酸盐转运蛋白 PitA 同源。 基因的突变确实降低了细胞内磷酸盐浓度。因此,我们将其命名为 。尽管 Δ 突变体中的 PMF 增强,但细胞内 ATP 浓度低于同基因野生型 PA14 菌株,这可能是由于缺乏 ATP 合成底物磷酸盐所致。在 Δ 突变体中过表达磷酸盐转运蛋白复合物基因 可恢复细胞内磷酸盐浓度、PMF、ATP 合成和氨基糖苷类抗生素耐药性。此外,与在高磷酸盐培养基中生长的细胞相比,野生型 PA14 在低磷酸盐培养基中的生长导致更高的 PMF 和氨基糖苷类抗生素敏感性。总的来说,我们的结果表明 PitA 在磷酸盐转运中的作用,并揭示了细胞内磷酸盐与氨基糖苷类抗生素敏感性之间的关系。

相似文献

1
Pseudomonas aeruginosa Phosphate Transporter PitA (PA4292) Controls Susceptibility to Aminoglycoside Antibiotics by Regulating the Proton Motive Force.
Antimicrob Agents Chemother. 2022 Dec 20;66(12):e0099222. doi: 10.1128/aac.00992-22. Epub 2022 Nov 8.
3
PitA Controls the H2- and H3-T6SSs through PhoB in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0209422. doi: 10.1128/aem.02094-22. Epub 2023 May 15.
4
Mutation of in Pseudomonas aeruginosa Increases β-Lactam Resistance through Upregulating Pyocyanin Production.
Antimicrob Agents Chemother. 2022 Jul 19;66(7):e0042122. doi: 10.1128/aac.00421-22. Epub 2022 Jun 13.
5
Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics.
PLoS Pathog. 2019 Apr 29;15(4):e1007697. doi: 10.1371/journal.ppat.1007697. eCollection 2019 Apr.
8
Oligoribonuclease Contributes to Tolerance to Aminoglycoside and β-Lactam Antibiotics by Regulating KatA in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2019 May 24;63(6). doi: 10.1128/AAC.00212-19. Print 2019 Jun.
10
Collateral sensitivity between aminoglycosides and beta-lactam antibiotics depends on active proton pumps.
Microb Pathog. 2017 Nov;112:122-125. doi: 10.1016/j.micpath.2017.09.049. Epub 2017 Sep 25.

引用本文的文献

1
In-host evolution of Yersinia enterocolitica during a chronic human infection.
Nat Commun. 2025 Jul 1;16(1):5637. doi: 10.1038/s41467-025-60782-6.
2
Metabolic Stress Induced by Quercetin Enhances Dormancy and Persistence in .
Antibiotics (Basel). 2025 Apr 22;14(5):424. doi: 10.3390/antibiotics14050424.
3
promoter influences antibiotic resistance via proton motive force and ROS in .
Front Microbiol. 2023 Nov 6;14:1276954. doi: 10.3389/fmicb.2023.1276954. eCollection 2023.
4
The PitA protein contributes to colistin susceptibility in Pseudomonas aeruginosa.
PLoS One. 2023 Oct 12;18(10):e0292818. doi: 10.1371/journal.pone.0292818. eCollection 2023.
5
PitA Controls the H2- and H3-T6SSs through PhoB in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0209422. doi: 10.1128/aem.02094-22. Epub 2023 May 15.

本文引用的文献

1
Mutation of in Pseudomonas aeruginosa Increases β-Lactam Resistance through Upregulating Pyocyanin Production.
Antimicrob Agents Chemother. 2022 Jul 19;66(7):e0042122. doi: 10.1128/aac.00421-22. Epub 2022 Jun 13.
2
Bronchiectasis and inhaled tobramycin: A literature review.
Respir Med. 2022 Feb;192:106728. doi: 10.1016/j.rmed.2021.106728. Epub 2022 Jan 1.
3
Elucidating the mechanism by which synthetic helper peptides sensitize Pseudomonas aeruginosa to multiple antibiotics.
PLoS Pathog. 2021 Sep 3;17(9):e1009909. doi: 10.1371/journal.ppat.1009909. eCollection 2021 Sep.
4
Aminoglycoside dosing and monitoring for Pseudomonas aeruginosa during acute pulmonary exacerbations in cystic fibrosis.
Pediatr Pulmonol. 2021 Dec;56(12):3634-3643. doi: 10.1002/ppul.25441. Epub 2021 May 13.
5
: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors.
Int J Mol Sci. 2021 Mar 18;22(6):3128. doi: 10.3390/ijms22063128.
7
Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis.
Nat Rev Microbiol. 2021 May;19(5):331-342. doi: 10.1038/s41579-020-00477-5. Epub 2020 Nov 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验