Suppr超能文献

基于 HADDOCK 的信息驱动抗体-抗原建模

Information-Driven Antibody-Antigen Modelling with HADDOCK.

机构信息

Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands.

出版信息

Methods Mol Biol. 2023;2552:267-282. doi: 10.1007/978-1-0716-2609-2_14.

Abstract

In the recent years, therapeutic use of antibodies has seen a huge growth, "due to their inherent proprieties and technological advances in the methods used to study and characterize them. Effective design and engineering of antibodies for therapeutic purposes are heavily dependent on knowledge of the structural principles that regulate antibody-antigen interactions. Several experimental techniques such as X-ray crystallography, cryo-electron microscopy, NMR, or mutagenesis analysis can be applied, but these are usually expensive and time-consuming. Therefore computational approaches like molecular docking may offer a valuable alternative for the characterization of antibody-antigen complexes.Here we describe a protocol for the prediction of the 3D structure of antibody-antigen complexes using the integrative modelling platform HADDOCK. The protocol consists of (1) the identification of the antibody residues belonging to the hypervariable loops which are known to be crucial for the binding and can be used to guide the docking and (2) the detailed steps to perform docking with the HADDOCK 2.4 webserver following different strategies depending on the availability of information about epitope residues.

摘要

近年来,抗体的治疗用途有了巨大的发展,“这是由于它们固有的特性以及用于研究和表征它们的方法的技术进步。为治疗目的有效设计和工程化抗体严重依赖于调节抗体-抗原相互作用的结构原则的知识。可以应用几种实验技术,例如 X 射线晶体学、低温电子显微镜、NMR 或突变分析,但这些通常既昂贵又耗时。因此,像分子对接这样的计算方法可能为抗体-抗原复合物的表征提供了有价值的替代方法。在这里,我们描述了使用集成建模平台 HADDOCK 预测抗体-抗原复合物的 3D 结构的方案。该方案包括 (1) 鉴定属于高变环的抗体残基,这些残基已知对结合至关重要,并可用于指导对接,以及 (2) 根据关于表位残基的信息的可用性,使用 HADDOCK 2.4 网络服务器执行对接的详细步骤,采用不同的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验