Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
Nucleic Acids Res. 2017 Jul 3;45(W1):W24-W29. doi: 10.1093/nar/gkx346.
Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community.
抗体已成为许多生物技术和临床应用中不可或缺的工具。它们通过识别抗原结构的一部分(表位)以高度特异性的方式与其分子靶标(抗原)结合。仅从抗原序列预测表位是一项复杂的任务。尽管做出了大量努力,但在过去十年中,表位预测方法的准确性,特别是那些仅依赖于抗原序列的方法,进展有限。在这里,我们介绍了 BepiPred-2.0(http://www.cbs.dtu.dk/services/BepiPred/),这是一个用于从抗原序列预测 B 细胞表位的网络服务器。BepiPred-2.0 是基于针对抗体-抗原蛋白质结构中注释的表位进行训练的随机森林算法。该新方法在源自已解决的 3D 结构的表位数据以及从 IEDB 数据库下载的大量线性表位上,均优于其他基于序列的表位预测工具。该方法以用户友好且信息丰富的方式显示结果,既适合计算机 savvy 的用户,也适合非专业用户。我们相信 BepiPred-2.0 将成为生物信息学和免疫学领域的有价值的工具。