Suppr超能文献

建模和力学干扰揭示了空间调节的附着是如何在哺乳动物纺锤体中产生空间上不同的力学特性的。

Modeling and mechanical perturbations reveal how spatially regulated anchorage gives rise to spatially distinct mechanics across the mammalian spindle.

机构信息

Biophysics Graduate Program, University of California, San Francisco, San Francisco, United States.

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States.

出版信息

Elife. 2022 Nov 8;11:e79558. doi: 10.7554/eLife.79558.

Abstract

During cell division, the spindle generates force to move chromosomes. In mammals, microtubule bundles called kinetochore-fibers (k-fibers) attach to and segregate chromosomes. To do so, k-fibers must be robustly anchored to the dynamic spindle. We previously developed microneedle manipulation to mechanically challenge k-fiber anchorage, and observed spatially distinct response features revealing the presence of heterogeneous anchorage (Suresh et al., 2020). How anchorage is precisely spatially regulated, and what forces are necessary and sufficient to recapitulate the k-fiber's response to force remain unclear. Here, we develop a coarse-grained k-fiber model and combine with manipulation experiments to infer underlying anchorage using shape analysis. By systematically testing different anchorage schemes, we find that forces solely at k-fiber ends are sufficient to recapitulate unmanipulated k-fiber shapes, but not manipulated ones for which lateral anchorage over a 3 μm length scale near chromosomes is also essential. Such anchorage robustly preserves k-fiber orientation near chromosomes while allowing pivoting around poles. Anchorage over a shorter length scale cannot robustly restrict pivoting near chromosomes, while anchorage throughout the spindle obstructs pivoting at poles. Together, this work reveals how spatially regulated anchorage gives rise to spatially distinct mechanics in the mammalian spindle, which we propose are key for function.

摘要

在细胞分裂过程中,纺锤体产生力来移动染色体。在哺乳动物中,称为动粒纤维(k-fibers)的微管束附着并分离染色体。为此,k-fibers 必须牢固地锚定在动态纺锤体上。我们之前开发了微针操作来机械地挑战 k-fiber 的锚固,观察到空间上不同的反应特征,揭示了存在异质锚固(Suresh 等人,2020)。锚固如何精确地空间调节,以及什么力是必要和充分的以再现 k-fiber 对力的反应仍然不清楚。在这里,我们开发了一个粗化的 k-fiber 模型,并结合操作实验使用形状分析来推断基础锚固。通过系统地测试不同的锚固方案,我们发现仅在 k-fiber 末端的力足以再现未操作的 k-fiber 形状,但不能再现操作的 k-fiber 形状,因为在靠近染色体的 3 μm 长度尺度上的侧部锚固也是必需的。这种锚固在靠近染色体的地方牢固地保持 k-fiber 的方向,同时允许围绕两极枢轴转动。在较短长度尺度上的锚固不能牢固地限制在靠近染色体的枢轴转动,而整个纺锤体中的锚固则阻碍了在两极的枢轴转动。总之,这项工作揭示了空间调节的锚固如何产生哺乳动物纺锤体中空间上不同的力学,我们认为这对于功能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40cc/9642996/1943291280f7/elife-79558-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验