Nazockdast Ehssan, Redemann Stefanie
Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA.
Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
Semin Cell Dev Biol. 2020 Nov;107:91-102. doi: 10.1016/j.semcdb.2020.06.018. Epub 2020 Jul 31.
During mitosis microtubules self-organize to form a bipolar mitotic spindle structure, which positions the sister chromatids on the spindle mid-plane and separates them afterwards. Previous studies have identified many spindle associated proteins. Yet, we do not fully understand how these nanoscopic proteins lead to force generation through interactions of individual microtubules, motor proteins and chromosomes, and how a large number of these local interactions ultimately determine the structure and mechanics of the spindle in micron scale. Here we review the current understanding and open questions related to the structure and mechanics of the mitotic spindle. We then discuss how a combination of electron microscopy and computational modeling can be used to tackle some of these open questions.
在有丝分裂过程中,微管会自我组织形成双极有丝分裂纺锤体结构,该结构将姐妹染色单体定位在纺锤体中平面上,随后将它们分开。先前的研究已经鉴定出许多与纺锤体相关的蛋白质。然而,我们尚未完全理解这些纳米级蛋白质如何通过单个微管、马达蛋白和染色体之间的相互作用产生力,以及大量这些局部相互作用最终如何决定微米级纺锤体的结构和力学性质。在此,我们综述了目前对有丝分裂纺锤体结构和力学性质的理解以及相关的开放性问题。然后,我们讨论如何结合电子显微镜和计算建模来解决其中一些开放性问题。