Suppr超能文献

哺乳动物纺锤体中的承力映射揭示了局部着丝粒纤维锚定,提供机械隔离和冗余。

Mapping Load-Bearing in the Mammalian Spindle Reveals Local Kinetochore Fiber Anchorage that Provides Mechanical Isolation and Redundancy.

机构信息

Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Curr Biol. 2017 Jul 24;27(14):2112-2122.e5. doi: 10.1016/j.cub.2017.06.018. Epub 2017 Jul 6.

Abstract

Active forces generated at kinetochores move chromosomes, and the dynamic spindle must robustly anchor kinetochore fibers (k-fibers) to bear this load. The mammalian spindle bears the load of chromosome movement far from poles, but we do not know where and how-physically and molecularly-this load distributes across the spindle. In part, this is because probing spindle mechanics in live cells is difficult. Yet answering this question is key to understanding how the spindle generates and responds to force and performs its diverse mechanical functions. Here, we map load-bearing across the mammalian spindle in space-time and dissect local anchorage mechanics and mechanism. To do so, we laser-ablate single k-fibers at different spindle locations and in different molecular backgrounds and quantify the immediate relaxation of chromosomes, k-fibers, and microtubule speckles. We find that load redistribution is locally confined in all directions: along the first 3-4 μm from kinetochores, scaling with k-fiber length, and laterally within ∼2 μm of k-fiber sides, without detectable load sharing between neighboring k-fibers. A phenomenological model suggests that dense, transient crosslinks to the spindle along k-fibers bear the load of chromosome movement but that these connections do not limit the timescale of spindle reorganization. The microtubule crosslinker NuMA is needed for the local load-bearing observed, whereas Eg5 and PRC1 are not detectably required, suggesting specialization in mechanical function. Together, the data and model suggest that NuMA-mediated crosslinks locally bear load, providing mechanical isolation and redundancy while allowing spindle fluidity. These features are well suited to support robust chromosome segregation.

摘要

动粒产生的力使染色体移动,而动态纺锤体必须牢固地锚定动粒纤维(k 纤维)以承受这种负载。哺乳动物纺锤体承受着远离两极的染色体运动的负载,但我们不知道这种负载在哪里以及如何——从物理和分子上——分布在纺锤体上。部分原因是在活细胞中探测纺锤体力学很困难。然而,回答这个问题是理解纺锤体如何产生和响应力以及执行其多样化的机械功能的关键。在这里,我们在时空上绘制了哺乳动物纺锤体的承载图,并剖析了局部锚固力学和机制。为此,我们在不同的纺锤体位置和不同的分子背景下用激光消融单根 k 纤维,并定量测量染色体、k 纤维和微管斑点的即时松弛。我们发现,负载再分配在各个方向上都是局部受限的:在距动粒的前 3-4μm 范围内,与 k 纤维长度成比例,在 k 纤维侧面的 2μm 范围内横向受限,相邻 k 纤维之间没有可检测到的负载共享。一个现象学模型表明,k 纤维上与纺锤体紧密、瞬时交联的蛋白承受着染色体运动的负载,但这些连接并不限制纺锤体重组的时间尺度。观察到的局部承载需要微管交联蛋白 NuMA,而 Eg5 和 PRC1 则不需要,这表明在机械功能上存在专业化。总的来说,数据和模型表明,NuMA 介导的交联蛋白局部承载负载,提供机械隔离和冗余,同时允许纺锤体流动性。这些特性非常适合支持强大的染色体分离。

相似文献

引用本文的文献

4
Mechanisms underlying spindle assembly and robustness.纺锤体组装和稳定性的机制。
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.

本文引用的文献

3
Bridging the gap between sister kinetochores.连接姐妹动粒之间的间隙。
Cell Cycle. 2016 May 2;15(9):1169-70. doi: 10.1080/15384101.2016.1157976. Epub 2016 Apr 25.
7
Physical basis of spindle self-organization.纺锤体自我组织的物理基础。
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18496-500. doi: 10.1073/pnas.1409404111. Epub 2014 Dec 2.
9
Force on spindle microtubule minus ends moves chromosomes.纺锤体微管负端的力使染色体移动。
J Cell Biol. 2014 Jul 21;206(2):245-56. doi: 10.1083/jcb.201401091. Epub 2014 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验