Wang Xiaonan, Zhou Ning, Gao Xuejiao J, Zhu Zijing, Sun Minmin, Wang Qian, Cao Haolin, Wu Xuetong, Zhou Caiyu, Zheng Qingkang, Yuan Ye, Liu Yuan, Chen Lei, Jiang Jing, Bu Pengcheng, Gao Lizeng
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China.
Sci China Life Sci. 2025 Apr;68(4):1158-1173. doi: 10.1007/s11427-024-2775-3. Epub 2025 Jan 14.
Alternative treatment for the highly prevalent Helicobacter pylori infection is imperative due to rising antibiotic resistance. We unexpectedly discovered that the anti-H. pylori component in garlic is hydrogen polysulfide (HS, n⩾2), not organic polysulfides. Studies on the mechanism of action (MoA) show that HS specifically inactivates H. pylori glucose-6-phosphate dehydrogenase (G6PDH) by interfering with electron transfer from glucose-6-phosphate (G6P) to nicotinamide adenine dinucleotide phosphate (NADP). However, low HS yield makes garlic derivatives hard to be a reliable donor of HS to treat H. pylori infection. To address this challenge, we established a polysulfide transformation process from garlic organosulfur compounds into FeS that generates HS with a 25-58 times increase in yield. Through chitosan encapsulation, we designed a gastric-adaptive HS microreactor (GAPSR) that eradicates H. pylori with 250 times higher efficiency under gastric conditions. A single GAPSR achieves more rapid H. pylori eradication than combined antibiotics therapy without disturbing the gut microbiota. These findings indicate a distinct MoA transformation mediated by polysulfide as an alternative candidate to treat H. pylori infection.
由于抗生素耐药性不断上升,针对高度流行的幽门螺杆菌感染的替代治疗势在必行。我们意外地发现,大蒜中抗幽门螺杆菌的成分是多硫化氢(HS,n⩾2),而非有机多硫化物。作用机制(MoA)研究表明,HS通过干扰从6-磷酸葡萄糖(G6P)到烟酰胺腺嘌呤二核苷酸磷酸(NADP)的电子转移,特异性地使幽门螺杆菌的6-磷酸葡萄糖脱氢酶(G6PDH)失活。然而,低多硫化氢产量使得大蒜衍生物难以成为治疗幽门螺杆菌感染的可靠多硫化氢供体。为应对这一挑战,我们建立了一个从大蒜有机硫化合物到FeS的多硫化物转化过程,该过程产生的多硫化氢产量提高了25至58倍。通过壳聚糖包封,我们设计了一种胃适应性多硫化氢微反应器(GAPSR),其在胃部条件下根除幽门螺杆菌的效率提高了250倍。单个GAPSR比联合抗生素疗法能更快速地根除幽门螺杆菌,且不会干扰肠道微生物群。这些发现表明多硫化物介导了一种独特的作用机制转变,可作为治疗幽门螺杆菌感染的替代候选方案。