Ashton Kevin J, Kiessling Can J, Thompson Jamie-Lee M, Aziz Aliah Y, Thomas Walter G, Headrick John P, Reichelt Melissa E
Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia.
School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia.
Exp Gerontol. 2023 Jan;171:112011. doi: 10.1016/j.exger.2022.112011. Epub 2022 Nov 5.
Phenotypic and transcriptomic evidence of early cardiac aging, and associated mechanisms, were investigated in young to middle-aged male mice (C57Bl/6; ages 8, 16, 32, 48 wks). Left ventricular gene expression (profiled via Illumina MouseWG-6 BeadChips), contractile and coronary function, and stress-resistance were assessed in Langendorff perfused hearts under normoxic conditions and following ischemic insult (20 min global ischemia-45 min reperfusion; I-R). Baseline or normoxic contractile function was unaltered by age, while cardiac and coronary 'reserves' (during β-adrenoceptor stimulation; 1 μM isoproterenol) declined by 48 wks. Resistance to I-R injury fell from 16 to 32 wks. Age-dependent transcriptional changes In un-stressed hearts were limited to 104 genes (>1.3-fold; 0.05 FDR), supporting: up-regulated innate defenses (glutathione and xenobiotic metabolism, chemotaxis, interleukins) and catecholamine secretion; and down-regulated extracellular matrix (ECM), growth factor and survival (PI3K/Akt) signaling. In stressed (post-ischemic) myocardium, ∼15-times as many genes (1528) were age-dependent, grouped into 6 clusters (>1.3-fold change; 0.05 FDR): most changing from 16 wks (45 % up/44 % down), a further 5 % declining from 32 wks. Major age-dependent Biological Processes in I-R hearts reveal: declining ATP metabolism, oxidative phosphorylation, cardiac contraction and morphogenesis, phospholipid metabolism and calcineurin signaling; increasing proteolysis and negative control of MAPK; and mixed changes in nuclear transport and angiogenic genes. Pathway analysis supports reductions in: autophagy, stress response, ER protein processing, mRNA surveillance and ribosome/translation genes; with later falls in mitochondrial biogenesis, oxidative phosphorylation and proteasome genes in I-R hearts. Summarizing, early cardiac aging is evident from 16 to 32 wks in male mice, characterized by: declining cardiovascular reserve and stress-resistance, transcriptomic evidence of constitutive stress and altered catecholamine and survival/growth signaling in healthy hearts; and declining stress response, quality control, mitochondrial energy metabolism and cardiac modeling processes in stressed hearts. These very early changes, potentially key substrate for advanced aging, may inform approaches to healthy aging and cardioprotection in the adult heart.
在年轻至中年雄性小鼠(C57Bl/6;8、16、32、48周龄)中研究了早期心脏衰老的表型和转录组学证据及其相关机制。在常氧条件下以及缺血损伤(20分钟全心缺血-45分钟再灌注;I-R)后,对Langendorff灌注心脏的左心室基因表达(通过Illumina MouseWG-6 BeadChips进行分析)、收缩和冠状动脉功能以及应激抗性进行了评估。基础或常氧收缩功能不受年龄影响,而心脏和冠状动脉“储备”(在β-肾上腺素能受体刺激期间;1μM异丙肾上腺素)在48周时下降。对I-R损伤的抗性在16至32周时下降。未受应激心脏中与年龄相关的转录变化仅限于104个基因(>1.3倍;0.05 FDR),支持:先天防御上调(谷胱甘肽和外源性物质代谢、趋化性、白细胞介素)和儿茶酚胺分泌;以及细胞外基质(ECM)、生长因子和生存(PI3K/Akt)信号下调。在应激(缺血后)心肌中,与年龄相关的基因数量约为前者的15倍(1528个),分为6个簇(>1.3倍变化;0. .05 FDR):大多数在16周时发生变化(45%上调/44%下调),另外5%在32周时下降。I-R心脏中主要的与年龄相关的生物学过程显示:ATP代谢、氧化磷酸化、心脏收缩和形态发生、磷脂代谢和钙调神经磷酸酶信号传导下降;蛋白水解增加和MAPK的负调控;以及核转运和血管生成基因的混合变化。通路分析支持以下方面的减少:自噬、应激反应(应激反应)、内质网蛋白加工、mRNA监测和核糖体/翻译基因;I-R心脏中线粒体生物发生、氧化磷酸化和蛋白酶体基因随后下降。总之,雄性小鼠在16至32周时早期心脏衰老明显,其特征为:心血管储备和应激抗性下降,健康心脏中存在组成性应激的转录组学证据以及儿茶酚胺和生存/生长信号改变;应激心脏中应激反应、质量控制、线粒体能量代谢和心脏建模过程下降。这些非常早期的变化可能是晚期衰老的关键底物,可能为成人心脏健康衰老和心脏保护方法提供信息。