Suppr超能文献

基于 SegNet 的左心室 MRI 分割在心脏肥大和心肌梗死诊断中的应用。

SegNet-based left ventricular MRI segmentation for the diagnosis of cardiac hypertrophy and myocardial infarction.

机构信息

Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 1677 Wutai mountain Road, Huangdao, Qingdao, Shandong 266000, China.

Pediatric Clinic, Qingdao Municipal Hospital, Qingdao, Shandong, China.

出版信息

Comput Methods Programs Biomed. 2022 Dec;227:107197. doi: 10.1016/j.cmpb.2022.107197. Epub 2022 Oct 29.

Abstract

OBJECTIVE

A set of cardiac MRI short-axis image dataset is constructed, and an automatic segmentation based on an improved SegNet model is developed to evaluate its performance based on deep learning techniques.

METHODS

The Affiliated Hospital of Qingdao University collected 1354 cardiac MRI between 2019 and 2022, and the dataset was divided into four categories: for the diagnosis of cardiac hypertrophy and myocardial infraction and normal control group by manual annotation to establish a cardiac MRI library. On the basis, the training set, validation set and test set were separated. SegNet is a classical deep learning segmentation network, which borrows part of the classical convolutional neural network, that pixelates the region of an object in an image division of levels. Its implementation consists of a convolutional neural network. Aiming at the problems of low accuracy and poor generalization ability of current deep learning frameworks in medical image segmentation, this paper proposes a semantic segmentation method based on deep separable convolutional network to improve the SegNet model, and trains the data set. Tensorflow framework was used to train the model and the experiment detection achieves good results.

RESULTS

In the validation experiment, the sensitivity and specificity of the improved SegNet model in the segmentation of left ventricular MRI were 0.889, 0.965, Dice coefficient was 0.878, Jaccard coefficient was 0.955, and Hausdorff distance was 10.163 mm, showing good segmentation effect.

CONCLUSION

The segmentation accuracy of the deep learning model developed in this paper can meet the requirements of most clinical medicine applications, and provides technical support for left ventricular identification in cardiac MRI.

摘要

目的

构建一套心脏 MRI 短轴图像数据集,并开发一种基于改进的 SegNet 模型的自动分割方法,基于深度学习技术评估其性能。

方法

青岛大学附属医院于 2019 年至 2022 年期间收集了 1354 份心脏 MRI 图像,并通过手动注释将其分为四类:用于诊断心脏肥大和心肌梗塞以及正常对照组,以建立心脏 MRI 库。在此基础上,将数据集分为训练集、验证集和测试集。SegNet 是一种经典的深度学习分割网络,它借鉴了部分经典卷积神经网络,将图像分区中的对象区域进行像素化处理。它的实现由卷积神经网络组成。针对当前深度学习框架在医学图像分割中准确性低、泛化能力差的问题,本文提出了一种基于深度可分离卷积网络的语义分割方法来改进 SegNet 模型,并对数据集进行了训练。使用 Tensorflow 框架对模型进行训练,实验检测取得了良好的效果。

结果

在验证实验中,改进的 SegNet 模型在左心室 MRI 分割中的灵敏度和特异性分别为 0.889、0.965、Dice 系数为 0.878、Jaccard 系数为 0.955、Hausdorff 距离为 10.163mm,具有良好的分割效果。

结论

本文提出的深度学习模型的分割精度能够满足大多数临床医学应用的要求,为心脏 MRI 中的左心室识别提供了技术支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验