Suppr超能文献

DeSPPNet:一种用于心脏分割的多尺度深度学习模型。

DeSPPNet: A Multiscale Deep Learning Model for Cardiac Segmentation.

作者信息

Elizar Elizar, Muharar Rusdha, Zulkifley Mohd Asyraf

机构信息

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.

Department of Electrical and Computer Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.

出版信息

Diagnostics (Basel). 2024 Dec 14;14(24):2820. doi: 10.3390/diagnostics14242820.

Abstract

BACKGROUND

Cardiac magnetic resonance imaging (MRI) plays a crucial role in monitoring disease progression and evaluating the effectiveness of treatment interventions. Cardiac MRI allows medical practitioners to assess cardiac function accurately by providing comprehensive and quantitative information about the structure and function, hence making it an indispensable tool for monitoring the disease and treatment response. Deep learning-based segmentation enables the precise delineation of cardiac structures including the myocardium, right ventricle, and left ventricle. The accurate segmentation of these structures helps in the diagnosis of heart failure, cardiac functional response to therapies, and understanding the state of the heart functions after treatment.

OBJECTIVES

The objective of this study is to develop a multiscale deep learning model to segment cardiac organs based on MRI imaging data. Good segmentation performance is difficult to achieve due to the complex nature of the cardiac structure, which includes a variety of chambers, arteries, and tissues. Furthermore, the human heart is also constantly beating, leading to motion artifacts that reduce image clarity and consistency. As a result, a multiscale method is explored to overcome various challenges in segmenting cardiac MRI images.

METHODS

This paper proposes DeSPPNet, a multiscale-based deep learning network. Its foundation follows encoder-decoder pair architecture that utilizes the Spatial Pyramid Pooling (SPP) layer to improve the performance of cardiac semantic segmentation. The SPP layer is designed to pool features from densely convolutional layers at different scales or sizes, which will be combined to maintain a set of spatial information. By processing features at different spatial resolutions, the multiscale densely connected layer in the form of the Pyramid Pooling Dense Module (PPDM) helps the network to capture both local and global context, preserving finer details of the cardiac structure while also capturing the broader context required to accurately segment larger cardiac structures. The PPDM is incorporated into the deeper layer of the encoder section of the deep learning network to allow it to recognize complex semantic features.

RESULTS

An analysis of multiple PPDM placement scenarios and structural variations revealed that the 3-path PPDM, positioned at the encoder layer 5, yielded optimal segmentation performance, achieving dice, intersection over union (IoU), and accuracy scores of 0.859, 0.800, and 0.993, respectively.

CONCLUSIONS

Different PPDM configurations produce a different effect on the network; as such, a shallower layer placement, like encoder layer 4, retains more spatial data that need more parallel paths to gather the optimal set of multiscale features. In contrast, deeper layers contain more informative features but at a lower spatial resolution, which reduces the number of parallel paths required to provide optimal multiscale context.

摘要

背景

心脏磁共振成像(MRI)在监测疾病进展和评估治疗干预效果方面发挥着关键作用。心脏MRI通过提供有关心脏结构和功能的全面定量信息,使医生能够准确评估心脏功能,因此它是监测疾病和治疗反应不可或缺的工具。基于深度学习的分割能够精确勾勒包括心肌、右心室和左心室在内的心脏结构。这些结构的准确分割有助于心力衰竭的诊断、心脏对治疗的功能反应评估以及了解治疗后心脏功能状态。

目的

本研究的目的是基于MRI成像数据开发一种多尺度深度学习模型来分割心脏器官。由于心脏结构的复杂性,包括各种腔室、动脉和组织,难以实现良好的分割性能。此外,心脏还在不断跳动,导致运动伪影,降低了图像的清晰度和一致性。因此,探索一种多尺度方法来克服分割心脏MRI图像中的各种挑战。

方法

本文提出了DeSPPNet,一种基于多尺度的深度学习网络。其基础遵循编码器-解码器对架构,利用空间金字塔池化(SPP)层来提高心脏语义分割的性能。SPP层旨在汇集来自不同尺度或大小的密集卷积层的特征,这些特征将被组合以保持一组空间信息。通过处理不同空间分辨率的特征,以金字塔池化密集模块(PPDM)形式的多尺度密集连接层有助于网络捕捉局部和全局上下文,保留心脏结构的更精细细节,同时也捕捉准确分割较大心脏结构所需的更广泛上下文。PPDM被纳入深度学习网络编码器部分的更深层,以使其能够识别复杂的语义特征。

结果

对多种PPDM放置场景和结构变化的分析表明,位于编码器第5层的3路径PPDM产生了最佳分割性能,骰子系数、交并比(IoU)和准确率分别达到0.859、0.800和0.993。

结论

不同的PPDM配置对网络产生不同的影响;因此,较浅的层放置,如编码器第4层,保留了更多的空间数据,需要更多的并行路径来收集最佳的多尺度特征集。相比之下,更深的层包含更多信息丰富的特征,但空间分辨率较低,这减少了提供最佳多尺度上下文所需的并行路径数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cbe/11674640/0f0126e411a5/diagnostics-14-02820-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验