Suppr超能文献

用于监测呼吸活动、可重复使用工业呼吸器贴合和过滤堵塞的嵌入式电子传感器。

Embedded Electronic Sensor for Monitoring of Breathing Activity, Fitting and Filter Clogging in Reusable Industrial Respirators.

机构信息

Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, 219 Edmundo Larenas St., Concepción 4030000, Chile.

Department of Multidisciplinary Engineering, Faculty of Engineering, Universidad de Santiago de Chile, Libertador Bernardo O'Higgins Av., Santiago 9170022, Chile.

出版信息

Biosensors (Basel). 2022 Nov 8;12(11):991. doi: 10.3390/bios12110991.

Abstract

Millions of workers are required to wear reusable respirators in several industries worldwide. Reusable respirators include filters that protect workers against harmful dust, smoke, gases, and vapors. These hazards may cause cancer, lung impairment, and diseases. Respiratory protection is prone to failure or misuse, such as wearing respirators with filters out of service life and employees wearing respirators loosely. Currently, there are no commercial systems capable of reliably alerting of misuse of respiratory protective equipment during the workday shifts or provide early information about dangerous clogging levels of filters. This paper proposes a low energy and non-obtrusive functional building block with embedded electronics that enable breathing monitoring inside an industrial reusable respirator. The embedded electronic device collects multidimensional data from an integrated pressure, temperature, and relative humidity sensor inside a reusable industrial respirator in real time and sends it wirelessly to an external platform for further processing. Here, the calculation of instantaneous breathing rate and estimation of the filter's respirator fitting and clogging level is performed. The device was tested with ten healthy subjects in laboratory trials. The subjects were asked to wear industrial reusable respirator with the embedded electronic device attached inside. The signals measured with the system were compared with airflow signals measured with calibrated transducers for validation purposes. The correlation between the estimated breathing rates using pressure, temperature, and relative humidity with the reference signal (airflow) is 0.987, 0.988 and 0.989 respectively, showing that instantaneous breathing rate can be calculated accurately using the information from the embedded device. Moreover, respirator fitting (well-fitted or loose condition) and filter's clogging levels (≤60%, 80% and 100% clogging) also can be estimated using features extracted from absolute pressure measurements combined to statistical analysis ANOVA models. These experimental outputs represent promising results for further development of data-driven prediction models using machine learning techniques to determine filters end-of-service life. Furthermore, the proposed system would collect relevant data for real-time monitoring of workers' breathing conditions and respirator usage, helping to improve occupational safety and health in the workplace.

摘要

全球有数百万人需要在多个行业中佩戴可重复使用的呼吸器。可重复使用的呼吸器包括过滤器,可以保护工人免受有害粉尘、烟雾、气体和蒸气的侵害。这些危害可能导致癌症、肺部损伤和疾病。呼吸防护设备容易出现故障或使用不当,例如佩戴已过使用寿命的呼吸器过滤器和员工佩戴呼吸器不紧。目前,没有商用系统能够可靠地提醒工人在工作日班次中错误使用呼吸防护设备,也无法提供有关过滤器危险堵塞程度的早期信息。本文提出了一种低能耗且非侵入式的功能构建模块,具有嵌入式电子设备,可实现工业可重复使用呼吸器内的呼吸监测。嵌入式电子设备实时从可重复使用工业呼吸器内的集成压力、温度和相对湿度传感器中收集多维数据,并将其无线发送到外部平台进行进一步处理。在这里,计算了瞬时呼吸率,并估计了过滤器的呼吸器适配和堵塞程度。该设备已在实验室试验中使用 10 名健康受试者进行了测试。要求受试者佩戴附有嵌入式电子设备的工业可重复使用呼吸器。为了验证目的,将系统测量的信号与经过校准的换能器测量的气流信号进行了比较。使用压力、温度和相对湿度估计的呼吸率与参考信号(气流)之间的相关性分别为 0.987、0.988 和 0.989,表明可以使用嵌入式设备中的信息准确计算瞬时呼吸率。此外,还可以使用从绝对压力测量中提取的特征并结合统计分析 ANOVA 模型来估计呼吸器适配(贴合良好或贴合不良)和过滤器堵塞程度(≤60%、80%和 100%堵塞)。这些实验结果为使用机器学习技术进一步开发数据驱动的预测模型以确定过滤器的使用寿命结束提供了有希望的结果。此外,所提出的系统将收集有关工人呼吸状况和呼吸器使用情况的实时监测数据,有助于改善工作场所的职业安全和健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e500/9688112/42071e5813ca/biosensors-12-00991-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验