Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece.
Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 15784, Greece.
Bioinformatics. 2022 Dec 13;38(24):5449-5451. doi: 10.1093/bioinformatics/btac680.
The allosteric modulation of peripheral membrane proteins (PMPs) by targeting protein-membrane interactions with drug-like molecules represents a new promising therapeutic strategy for proteins currently considered undruggable. However, the accessibility of protein-membrane interfaces by small molecules has been so far unexplored, possibly due to the complexity of the interface, the limited protein-membrane structural information and the lack of computational workflows to study it. Herein, we present a pipeline for drugging protein-membrane interfaces using the DREAMM (Drugging pRotein mEmbrAne Machine learning Method) web server. DREAMM works in the back end with a fast and robust ensemble machine learning algorithm for identifying protein-membrane interfaces of PMPs. Additionally, DREAMM also identifies binding pockets in the vicinity of the predicted membrane-penetrating amino acids in protein conformational ensembles provided by the user or generated within DREAMM.
DREAMM web server is accessible via https://dreamm.ni4os.eu.
Supplementary data are available at Bioinformatics online.
通过靶向蛋白-膜相互作用的药物样分子来调节外周膜蛋白(PMPs)的变构,为目前认为不可成药的蛋白提供了一种新的有前途的治疗策略。然而,小分子与蛋白-膜界面的可及性迄今仍未得到探索,这可能是由于界面的复杂性、有限的蛋白-膜结构信息以及缺乏用于研究它的计算工作流程。在此,我们提出了一个使用 DREAMM(Drugging pRotein mEmbrAne Machine learning Method)网络服务器对蛋白-膜界面进行药物设计的管道。DREAMM 在后端使用快速而强大的集成机器学习算法来识别 PMP 的蛋白-膜界面。此外,DREAMM 还可以在用户提供或在 DREAMM 内部生成的蛋白构象集合中预测的穿膜氨基酸附近识别结合口袋。
DREAMM 网络服务器可通过 https://dreamm.ni4os.eu 访问。
补充数据可在“Bioinformatics”在线获取。