Mines Saint-Étienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, Saint-Étienne, France.
HEVA, Lyon, France.
PLoS One. 2022 Nov 10;17(11):e0277135. doi: 10.1371/journal.pone.0277135. eCollection 2022.
This paper introduces an end-to-end methodology to predict a pathway-related outcome and identifying predictive factors using autoencoders. A formal description of autoencoders for explainable binary predictions is presented, along with two objective functions that allows for filtering and inverting negative examples during training. A methodology to model and transform complex medical event logs is also proposed, which keeps the pathway information in terms of events and time, as well as the hierarchy information carried in medical codes. A case study is presented, in which the short-term mortality after the implementation of an Implantable Cardioverter-Defibrillator is predicted. Proposed methodologies have been tested and compared to other predictive methods, both explainable and not explainable. Results show the competitiveness of the method in terms of performances, particularly the use of a Variational Auto Encoder with an inverse objective function. Finally, the explainability of the method has been demonstrated, allowing for the identification of interesting predictive factors validated using relative risks.
本文提出了一种端到端的方法,使用自动编码器来预测与途径相关的结果和识别预测因素。本文介绍了用于可解释的二分类预测的自动编码器的正式描述,以及两个目标函数,允许在训练过程中过滤和反转负例。还提出了一种用于建模和转换复杂医疗事件日志的方法,该方法以事件和时间的形式保留途径信息,以及医疗代码中携带的层次信息。本文提出了一个案例研究,预测植入式心脏复律除颤器实施后的短期死亡率。所提出的方法已经过测试,并与其他可解释和不可解释的预测方法进行了比较。结果表明,该方法在性能方面具有竞争力,特别是使用具有逆目标函数的变分自动编码器。最后,本文展示了该方法的可解释性,允许使用相对风险识别有趣的预测因素。