Suppr超能文献

犬类唾液作为抗菌抗性基因的一个可能来源。

Canine Saliva as a Possible Source of Antimicrobial Resistance Genes.

作者信息

Tóth Adrienn Gréta, Tóth Imre, Rózsa Bernadett, Dubecz Attila, Patai Árpád V, Németh Tibor, Kaplan Selçuk, Kovács Eszter Gabriella, Makrai László, Solymosi Norbert

机构信息

Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary.

Department of Operative Tecniques and Surgical Research, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.

出版信息

Antibiotics (Basel). 2022 Oct 27;11(11):1490. doi: 10.3390/antibiotics11111490.

Abstract

While the One Health issues of intensive animal farming are commonly discussed, keeping companion animals is less associated with the interspecies headway of antimicrobial resistance. With the constant advance in veterinary standards, antibiotics are regularly applied in companion animal medicine. Due to the close coexistence of dogs and humans, dog bites and other casual encounters with dog saliva (e.g., licking the owner) are common. According to our metagenome study, based on 26 new generation sequencing canine saliva datasets from 2020 and 2021 reposited in NCBI SRA by The 10,000 Dog Genome Consortium and the Broad Institute within Darwin's Ark project, canine saliva is rich in bacteria with predictably transferable antimicrobial resistance genes (ARGs). In the genome of potentially pathogenic , , , , , , and species, which are some of the most relevant bacteria in dog bite infections, ARGs against aminoglycosides, carbapenems, cephalosporins, glycylcyclines, lincosamides, macrolides, oxazolidinone, penams, phenicols, pleuromutilins, streptogramins, sulfonamides and tetracyclines could be identified. Several ARGs, including ones against amoxicillin-clavulanate, the most commonly applied antimicrobial agent for dog bites, were predicted to be potentially transferable based on their association with mobile genetic elements (e.g., plasmids, prophages and integrated mobile genetic elements). According to our findings, canine saliva may be a source of transfer for ARG-rich bacteria that can either colonize the human body or transport ARGs to the host bacteriota, and thus can be considered as a risk in the spread of antimicrobial resistance.

摘要

虽然集约化动物养殖的“同一健康”问题经常被讨论,但饲养伴侣动物与抗菌药物耐药性的种间传播关联较小。随着兽医标准的不断进步,抗生素在伴侣动物医学中经常被使用。由于狗与人的密切共存,狗咬伤和其他与狗唾液的偶然接触(例如舔主人)很常见。根据我们的宏基因组研究,基于一万只狗基因组联盟和布罗德研究所于达尔文方舟项目中存放在NCBI SRA的2020年和2021年的26个新一代测序犬唾液数据集,犬唾液中富含细菌,带有可预测的可转移抗菌耐药基因(ARGs)。在可能致病的、、、、、、和物种的基因组中,这些是狗咬伤感染中一些最相关的细菌,可鉴定出针对氨基糖苷类、碳青霉烯类、头孢菌素类、甘氨酰环素类、林可酰胺类、大环内酯类、恶唑烷酮类、青霉烯类、酚类、截短侧耳素类、链阳菌素类、磺胺类和四环素类的ARGs。包括针对阿莫西林 - 克拉维酸(狗咬伤最常用的抗菌剂)的几种ARGs,基于它们与移动遗传元件(例如质粒、噬菌体和整合移动遗传元件)的关联,预计具有潜在的可转移性。根据我们的研究结果,犬唾液可能是富含ARG的细菌的转移来源,这些细菌要么可在人体定殖,要么将ARGs转移到宿主微生物群,因此可被视为抗菌药物耐药性传播的一个风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4063/9686479/5e2711ad892c/antibiotics-11-01490-g001.jpg

相似文献

1
Canine Saliva as a Possible Source of Antimicrobial Resistance Genes.
Antibiotics (Basel). 2022 Oct 27;11(11):1490. doi: 10.3390/antibiotics11111490.
2
A glimpse of antimicrobial resistance gene diversity in kefir and yoghurt.
Sci Rep. 2020 Dec 31;10(1):22458. doi: 10.1038/s41598-020-80444-5.
3
The Urinary Resistome of Clinically Healthy Companion Dogs: Potential One Health Implications.
Antibiotics (Basel). 2022 Jun 8;11(6):780. doi: 10.3390/antibiotics11060780.
6
Structure of the manure resistome and the associated mobilome for assessing the risk of antimicrobial resistance transmission to crops.
Sci Total Environ. 2022 Feb 20;808:152144. doi: 10.1016/j.scitotenv.2021.152144. Epub 2021 Dec 3.
7
Antimicrobial resistance genes and associated mobile genetic elements in Lactobacillales from various sources.
Front Microbiol. 2023 Nov 17;14:1281473. doi: 10.3389/fmicb.2023.1281473. eCollection 2023.
9
Mobile Antimicrobial Resistance Genes in Probiotics.
Antibiotics (Basel). 2021 Oct 21;10(11):1287. doi: 10.3390/antibiotics10111287.
10
Antimicrobial Resistance among Staphylococci of Animal Origin.
Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.ARBA-0010-2017.

引用本文的文献

1
Comparative Genome Analysis of Canine Isolates.
Antibiotics (Basel). 2024 Dec 22;13(12):1235. doi: 10.3390/antibiotics13121235.
2
Screening canine sources for novel antimicrobials reveals the circular broad-spectrum bacteriocin, caledonicin, produced by .
Front Microbiol. 2024 Aug 26;15:1470988. doi: 10.3389/fmicb.2024.1470988. eCollection 2024.
4
Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review.
Infect Drug Resist. 2023 Dec 8;16:7515-7545. doi: 10.2147/IDR.S428837. eCollection 2023.
5
Comparison of Oral Microbial Composition and Determinants Encoding Antimicrobial Resistance in Dogs and Their Owners.
Antibiotics (Basel). 2023 Oct 20;12(10):1554. doi: 10.3390/antibiotics12101554.
6
Infections in Eurasian Beavers ().
Pathogens. 2023 Jul 26;12(8):979. doi: 10.3390/pathogens12080979.
7
Antimicrobial resistance gene lack in tick-borne pathogenic bacteria.
Sci Rep. 2023 May 20;13(1):8167. doi: 10.1038/s41598-023-35356-5.
9
Antimicrobial resistance among canine enterococci in the northeastern United States, 2007-2020.
Front Microbiol. 2023 Jan 5;13:1025242. doi: 10.3389/fmicb.2022.1025242. eCollection 2022.

本文引用的文献

1
Ancestry-inclusive dog genomics challenges popular breed stereotypes.
Science. 2022 Apr 29;376(6592):eabk0639. doi: 10.1126/science.abk0639.
2
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.
Lancet. 2022 Feb 12;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0. Epub 2022 Jan 19.
4
Characterizing Pet Acquisition and Retention During the COVID-19 Pandemic.
Front Vet Sci. 2021 Nov 18;8:781403. doi: 10.3389/fvets.2021.781403. eCollection 2021.
5
Global antibiotic consumption and usage in humans, 2000-18: a spatial modelling study.
Lancet Planet Health. 2021 Dec;5(12):e893-e904. doi: 10.1016/S2542-5196(21)00280-1. Epub 2021 Nov 12.
6
Understanding Antibiotic Use in Companion Animals: A Literature Review Identifying Avenues for Future Efforts.
Front Vet Sci. 2021 Oct 8;8:719547. doi: 10.3389/fvets.2021.719547. eCollection 2021.
7
Intravenous fosfomycin as salvage therapy for osteomyelitis caused by multidrug-resistant Pseudomonas aeruginosa.
Am J Health Syst Pharm. 2021 Dec 9;78(24):2209-2215. doi: 10.1093/ajhp/zxab294.
9
Did the COVID-19 Pandemic Spark a Public Interest in Pet Adoption?
Front Vet Sci. 2021 May 7;8:647308. doi: 10.3389/fvets.2021.647308. eCollection 2021.
10
Antibiotic prescription practices and opinions regarding antimicrobial resistance among veterinarians in Kentucky, USA.
PLoS One. 2021 Apr 15;16(4):e0249653. doi: 10.1371/journal.pone.0249653. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验