Suppr超能文献

一种结合图像处理和深度学习混合模型的稳健框架,用于使用有限数量的基于纸张的复杂心电图图像对心血管疾病进行分类。

A Robust Framework Combining Image Processing and Deep Learning Hybrid Model to Classify Cardiovascular Diseases Using a Limited Number of Paper-Based Complex ECG Images.

作者信息

Fatema Kaniz, Montaha Sidratul, Rony Md Awlad Hossen, Azam Sami, Hasan Md Zahid, Jonkman Mirjam

机构信息

Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh.

College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia.

出版信息

Biomedicines. 2022 Nov 7;10(11):2835. doi: 10.3390/biomedicines10112835.

Abstract

Heart disease can be life-threatening if not detected and treated at an early stage. The electrocardiogram (ECG) plays a vital role in classifying cardiovascular diseases, and often physicians and medical researchers examine paper-based ECG images for cardiac diagnosis. An automated heart disease prediction system might help to classify heart diseases accurately at an early stage. This study aims to classify cardiac diseases into five classes with paper-based ECG images using a deep learning approach with the highest possible accuracy and the lowest possible time complexity. This research consists of two approaches. In the first approach, five deep learning models, InceptionV3, ResNet50, MobileNetV2, VGG19, and DenseNet201, are employed. In the second approach, an integrated deep learning model (InRes-106) is introduced, combining InceptionV3 and ResNet50. This model is developed as a deep convolutional neural network capable of extracting hidden and high-level features from images. An ablation study is conducted on the proposed model altering several components and hyperparameters, improving the performance even further. Before training the model, several image pre-processing techniques are employed to remove artifacts and enhance the image quality. Our proposed hybrid InRes-106 model performed best with a testing accuracy of 98.34%. The InceptionV3 model acquired a testing accuracy of 90.56%, the ResNet50 89.63%, the DenseNet201 88.94%, the VGG19 87.87%, and the MobileNetV2 achieved 80.56% testing accuracy. The model is trained with a k-fold cross-validation technique with different k values to evaluate the robustness further. Although the dataset contains a limited number of complex ECG images, our proposed approach, based on various image pre-processing techniques, model fine-tuning, and ablation studies, can effectively diagnose cardiac diseases.

摘要

如果心脏病在早期未被发现和治疗,可能会危及生命。心电图(ECG)在心血管疾病分类中起着至关重要的作用,医生和医学研究人员经常会检查纸质心电图图像以进行心脏诊断。一个自动化的心脏病预测系统可能有助于在早期准确地对心脏病进行分类。本研究旨在使用深度学习方法,以尽可能高的准确率和尽可能低的时间复杂度,将基于纸质心电图图像的心脏病分为五类。本研究包括两种方法。在第一种方法中,使用了五个深度学习模型,即InceptionV3、ResNet50、MobileNetV2、VGG19和DenseNet201。在第二种方法中,引入了一个集成深度学习模型(InRes - 106),它结合了InceptionV3和ResNet50。该模型被开发为一个深度卷积神经网络,能够从图像中提取隐藏的高级特征。对所提出的模型进行了消融研究,改变了几个组件和超参数,进一步提高了性能。在训练模型之前,采用了几种图像预处理技术来去除伪影并提高图像质量。我们提出的混合InRes - 106模型表现最佳,测试准确率为98.34%。InceptionV3模型的测试准确率为90.56%,ResNet50为89.63%,DenseNet201为88.94%,VGG19为87.87%,MobileNetV2的测试准确率为80.56%。该模型使用具有不同k值的k折交叉验证技术进行训练,以进一步评估其稳健性。尽管数据集包含的复杂心电图图像数量有限,但我们基于各种图像预处理技术、模型微调以及消融研究提出的方法能够有效地诊断心脏病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f113/9687837/ad0c7af5421f/biomedicines-10-02835-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验