Suppr超能文献

一种用于成人髋关节X线测量的深度学习算法——可靠性与一致性研究

A Deep Learning Algorithm for Radiographic Measurements of the Hip in Adults-A Reliability and Agreement Study.

作者信息

Jensen Janni, Graumann Ole, Overgaard Søren, Gerke Oke, Lundemann Michael, Haubro Martin Haagen, Varnum Claus, Bak Lene, Rasmussen Janne, Olsen Lone B, Rasmussen Benjamin S B

机构信息

Department of Radiology, Odense University Hospital, 5000 Odense, Denmark.

Research and Innovation Unit of Radiology, University of Southern Denmark, 5230 Odense, Denmark.

出版信息

Diagnostics (Basel). 2022 Oct 26;12(11):2597. doi: 10.3390/diagnostics12112597.

Abstract

Hip dysplasia (HD) is a frequent cause of hip pain in skeletally mature patients and may lead to osteoarthritis (OA). An accurate and early diagnosis may postpone, reduce or even prevent the onset of OA and ultimately hip arthroplasty at a young age. The overall aim of this study was to assess the reliability of an algorithm, designed to read pelvic anterior-posterior (AP) radiographs and to estimate the agreement between the algorithm and human readers for measuring (i) lateral center edge angle of Wiberg (LCEA) and (ii) Acetabular index angle (AIA). The algorithm was based on deep-learning models developed using a modified U-net architecture and ResNet 34. The newly developed algorithm was found to be highly reliable when identifying the anatomical landmarks used for measuring LCEA and AIA in pelvic radiographs, thus offering highly consistent measurement outputs. The study showed that manual identification of the same landmarks made by five specialist readers were subject to variance and the level of agreement between the algorithm and human readers was consequently poor with mean measured differences from 0.37 to 9.56° for right LCEA measurements. The algorithm displayed the highest agreement with the senior orthopedic surgeon. With further development, the algorithm may be a good alternative to humans when screening for HD.

摘要

髋关节发育不良(HD)是骨骼成熟患者髋关节疼痛的常见原因,可能导致骨关节炎(OA)。准确的早期诊断可能会推迟、减轻甚至预防OA的发生,并最终避免年轻时进行髋关节置换术。本研究的总体目标是评估一种算法的可靠性,该算法旨在读取骨盆前后位(AP)X线片,并估计该算法与人类阅片者在测量(i)Wiberg外侧中心边缘角(LCEA)和(ii)髋臼指数角(AIA)方面的一致性。该算法基于使用改进的U-net架构和ResNet 34开发的深度学习模型。研究发现,新开发的算法在识别骨盆X线片中用于测量LCEA和AIA的解剖标志时具有高度可靠性,从而提供高度一致的测量输出。研究表明,五位专业阅片者对相同标志的手动识别存在差异,因此算法与人类阅片者之间的一致性较差,右侧LCEA测量的平均测量差异为0.37至9.56°。该算法与资深骨科医生的一致性最高。随着进一步发展,该算法在筛查HD时可能是人类的一个很好的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3910/9689405/0ff3ebd6cf58/diagnostics-12-02597-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验