Suppr超能文献

运用机器学习技术构建的住院COVID-19患者严重程度及生存情况的预后模型

Prognostic Model of COVID-19 Severity and Survival among Hospitalized Patients Using Machine Learning Techniques.

作者信息

Lodato Ivano, Iyer Aditya Varna, To Isaac Zachary, Lai Zhong-Yuan, Chan Helen Shuk-Ying, Leung Winnie Suk-Wai, Tang Tommy Hing-Cheung, Cheung Victor Kai-Lam, Wu Tak-Chiu, Ng George Wing-Yiu

机构信息

Allos Limited, 1 Hok Cheung Street, Kowloon, Hong Kong, China.

Department of Physics, University of Oxford, Oxford OX1 3PJ, UK.

出版信息

Diagnostics (Basel). 2022 Nov 8;12(11):2728. doi: 10.3390/diagnostics12112728.

Abstract

We conducted a statistical study and developed a machine learning model to triage COVID-19 patients affected during the height of the COVID-19 pandemic in Hong Kong based on their medical records and test results (features) collected during their hospitalization. The correlation between the values of these features is studied against discharge status and disease severity as a preliminary step to identify those features with a more pronounced effect on the patient outcome. Once identified, they constitute the inputs of four machine learning models, Decision Tree, Random Forest, Gradient and RUSBoosting, which predict both the Mortality and Severity associated with the disease. We test the accuracy of the models when the number of input features is varied, demonstrating their stability; i.e., the models are already highly predictive when run over a core set of (6) features. We show that Random Forest and Gradient Boosting classifiers are highly accurate in predicting patients' Mortality (average accuracy ∼99%) as well as categorize patients (average accuracy ∼91%) into four distinct risk classes (Severity of COVID-19 infection). Our methodical and broad approach combines statistical insights with various machine learning models, which paves the way forward in the AI-assisted triage and prognosis of COVID-19 cases, which is potentially generalizable to other seasonal flus.

摘要

我们进行了一项统计研究,并开发了一个机器学习模型,用于根据香港新冠疫情高峰期住院的新冠患者的病历和检测结果(特征)对其进行分诊。作为识别那些对患者预后有更显著影响的特征的初步步骤,研究了这些特征值与出院状态和疾病严重程度之间的相关性。一旦确定,它们就构成了四个机器学习模型(决策树、随机森林、梯度提升和RUSBoosting)的输入,这些模型可以预测与该疾病相关的死亡率和严重程度。当输入特征数量变化时,我们测试了模型的准确性,证明了它们的稳定性;也就是说,当在一组核心的(6个)特征上运行时,这些模型已经具有很高的预测性。我们表明,随机森林和梯度提升分类器在预测患者死亡率(平均准确率约99%)以及将患者分类(平均准确率约91%)为四个不同风险类别(新冠感染严重程度)方面非常准确。我们系统而广泛的方法将统计见解与各种机器学习模型相结合,为新冠病例的人工智能辅助分诊和预后铺平了道路,这有可能推广到其他季节性流感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86db/9689804/261faeb3a271/diagnostics-12-02728-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验