Departamento de Física, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México, México.
ABC Medical Center, Ciudad de México, México.
PLoS One. 2021 Sep 20;16(9):e0257234. doi: 10.1371/journal.pone.0257234. eCollection 2021.
The current COVID-19 public health crisis, caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has produced a devastating toll both in terms of human life loss and economic disruption. In this paper we present a machine-learning algorithm capable of identifying whether a given patient (actually infected or suspected to be infected) is more likely to survive than to die, or vice-versa. We train this algorithm with historical data, including medical history, demographic data, as well as COVID-19-related information. This is extracted from a database of confirmed and suspected COVID-19 infections in Mexico, constituting the official COVID-19 data compiled and made publicly available by the Mexican Federal Government. We demonstrate that the proposed method can detect high-risk patients with high accuracy, in each of four identified clinical stages, thus improving hospital capacity planning and timely treatment. Furthermore, we show that our method can be extended to provide optimal estimators for hypothesis-testing techniques commonly-used in biological and medical statistics. We believe that our work could be of use in the context of the current pandemic in assisting medical professionals with real-time assessments so as to determine health care priorities.
当前由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的 COVID-19 公共卫生危机,给人类生命损失和经济破坏带来了毁灭性的打击。在本文中,我们提出了一种机器学习算法,能够识别给定患者(实际感染或疑似感染)的存活概率是否高于死亡概率,或者相反。我们使用历史数据(包括病史、人口统计数据以及与 COVID-19 相关的信息)来训练这个算法。这些数据是从墨西哥确诊和疑似 COVID-19 感染的数据库中提取的,是墨西哥联邦政府汇编并公开提供的官方 COVID-19 数据。我们证明,该方法可以在四个确定的临床阶段中的每一个阶段,以高精度检测高危患者,从而改善医院的容量规划和及时治疗。此外,我们还表明,我们的方法可以扩展到提供生物医学统计学中常用的假设检验技术的最优估计器。我们认为,我们的工作可以在当前大流行的背景下,为医疗专业人员提供实时评估,以确定医疗保健的优先级。