文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy.

作者信息

Zhou Weixin, Jia Yujie, Liu Yani, Chen Yan, Zhao Pengxuan

机构信息

Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

出版信息

Pharmaceutics. 2022 Oct 31;14(11):2346. doi: 10.3390/pharmaceutics14112346.


DOI:10.3390/pharmaceutics14112346
PMID:36365164
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9694300/
Abstract

With the development of nanomedicine technology, stimuli-responsive nanocarriers play an increasingly important role in antitumor therapy. Compared with the normal physiological environment, the tumor microenvironment (TME) possesses several unique properties, including acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive reactive oxygen species (ROS), which are closely related to the occurrence and development of tumors. However, on the other hand, these properties could also be harnessed for smart drug delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles (srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake, thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition, the challenges and prospects for the development of srNPs are discussed, which can possibly inspire researchers to develop srNPs for clinical applications in the future.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/df6d00d97987/pharmaceutics-14-02346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/6750488ddc71/pharmaceutics-14-02346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/9b154d8f0002/pharmaceutics-14-02346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/ba870594ae90/pharmaceutics-14-02346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/ddd6edd344a8/pharmaceutics-14-02346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/781445cca2a4/pharmaceutics-14-02346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/d8389692d758/pharmaceutics-14-02346-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/29cb8421486f/pharmaceutics-14-02346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/df6d00d97987/pharmaceutics-14-02346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/6750488ddc71/pharmaceutics-14-02346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/9b154d8f0002/pharmaceutics-14-02346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/ba870594ae90/pharmaceutics-14-02346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/ddd6edd344a8/pharmaceutics-14-02346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/781445cca2a4/pharmaceutics-14-02346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/d8389692d758/pharmaceutics-14-02346-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/29cb8421486f/pharmaceutics-14-02346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/9694300/df6d00d97987/pharmaceutics-14-02346-g005.jpg

相似文献

[1]
Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy.

Pharmaceutics. 2022-10-31

[2]
Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.

Acc Chem Res. 2018-10-15

[3]
Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy.

Adv Sci (Weinh). 2022-2

[4]
Tumor Microenvironment Responsive RNA Drug Delivery Systems: Intelligent Platforms for Sophisticated Release.

Mol Pharm. 2024-9-2

[5]
Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy.

Front Immunol. 2023

[6]
Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics.

ACS Nano. 2023-12-12

[7]
Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.

Theranostics. 2020

[8]
Hyaluronic Acid-Bilirubin Nanoparticles as a Tumor Microenvironment Reactive Oxygen Species-Responsive Nanomedicine for Targeted Cancer Therapy.

Int J Nanomedicine. 2024

[9]
Stimuli-responsive nanoassemblies for targeted delivery against tumor and its microenvironment.

Biochim Biophys Acta Rev Cancer. 2022-9

[10]
Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy.

Int J Nanomedicine. 2024

引用本文的文献

[1]
Nanomedicine Approaches for Autophagy Modulation in Cancer Therapy.

Small Sci. 2025-4-11

[2]
Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery.

Mol Cancer. 2025-6-3

[3]
Harnessing the Power of Nanocarriers to Exploit the Tumor Microenvironment for Enhanced Cancer Therapy.

Pharmaceuticals (Basel). 2025-5-19

[4]
Innovative applications of silicon dioxide nanoparticles for targeted liver cancer treatment.

Front Bioeng Biotechnol. 2025-5-12

[5]
A comprehensive bibliometric analysis of ferroptosis in tumor resistance: development and emerging trends.

Front Immunol. 2025-5-9

[6]
Nanocarriers for cutting-edge cancer immunotherapies.

J Transl Med. 2025-4-16

[7]
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems.

Pharmaceutics. 2025-2-24

[8]
Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI.

Metabolites. 2025-3-13

[9]
Delving Into Nanoparticle Systems for Enhanced Drug Delivery Technologies.

AAPS PharmSciTech. 2025-3-4

[10]
Engendered nanoparticles for treatment of brain tumors.

Oncol Res. 2024-12-20

本文引用的文献

[1]
Tumor-Specific Monomethyl Auristatin E (MMAE) Prodrug Nanoparticles for Safe and Effective Chemotherapy.

Pharmaceutics. 2022-10-7

[2]
Design of GSH-Responsive Curcumin Nanomicelles for Oesophageal Cancer Therapy.

Pharmaceutics. 2022-8-27

[3]
Research progress on tumor hypoxia-associative nanomedicine.

J Control Release. 2022-10

[4]
A transistor-like pH-sensitive nanodetergent for selective cancer therapy.

Nat Nanotechnol. 2022-5

[5]
A Transformable Amphiphilic and Block Polymer-Dendron Conjugate for Enhanced Tumor Penetration and Retention with Cellular Homeostasis Perturbation via Membrane Flow.

Adv Mater. 2022-4

[6]
Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery.

Pharmaceutics. 2022-1-7

[7]
A self-amplified ROS-responsive chemodrug-inhibitor conjugate for multi-drug resistance tumor therapy.

Biomater Sci. 2022-2-15

[8]
Enzyme-Triggered Release of the Antisense Octaarginine-PNA Conjugate from Phospholipase A2 Sensitive Liposomes.

ACS Appl Bio Mater. 2020-2-17

[9]
GSH-Responsive Drug Delivery System for Active Therapy and Reducing the Side Effects of Bleomycin.

ACS Appl Mater Interfaces. 2022-1-12

[10]
Revisiting the HIF switch in the tumor and its immune microenvironment.

Trends Cancer. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索