Suppr超能文献

光伏光镊组装的金纳米粒子微图案:在等离子体荧光增强中的应用。

Micro-patterns of gold nanoparticles assembled by photovoltaic optoelectronic tweezers: application to plasmonic fluorescence enhancement.

出版信息

Opt Express. 2022 Nov 7;30(23):41541-41553. doi: 10.1364/OE.471928.

Abstract

Noble metal nanostructures are well-known for their ability to increase the efficiency of different optical or physical phenomena due to their plasmonic behavior. This work presents a simple strategy to obtain Au plasmonic patterns by optically induced nanoparticle assembly and its application as fluorescence enhancement platforms. This strategy is based on the so-called photovoltaic optoelectronic tweezers (PVOT) being the first time they are used for fabricating Au periodic micro-patterns. Fringe patterns with a sub-structure of aggregates, assembled from individual spherical nanoparticles of 3.5 or 170 nm diameters, are successfully obtained. The spatial distribution of the aggregates is controlled with micrometric accuracy and the patterns can be arranged over large-scale active areas (tens of mm). The outcome for the ultra-small (3.5 nm) particles is particularly relevant because this diameter is the smallest one manipulated by PVOT so far. Testing experiments of plasmonic fluorescence enhancement show that the 170-nm patterns present a much better plasmonic behavior. For the 170-nm platform they reveal a 10-fold enhancement factor in the fluorescence of Rhodamine-B dye molecules and a 3-fold one for tagged DNA biomolecules. Hence, the results suggest that these latter plasmonic platforms are good candidates for efficient bio-imaging and biosensing techniques, among other applications.

摘要

贵金属纳米结构因其等离子体行为而能够提高不同光学或物理现象的效率,这是众所周知的。本工作提出了一种通过光诱导纳米粒子组装获得 Au 等离子体图案的简单策略,并将其应用于荧光增强平台。该策略基于所谓的光伏光电镊 (PVOT),这是首次将其用于制造 Au 周期性微图案。成功获得了由直径为 3.5 或 170nm 的单个球形纳米粒子组装而成的具有亚结构聚集的条纹图案。聚集的空间分布可以以微米级的精度控制,并且可以在大的活动区域(数十毫米)上排列图案。对于超小(3.5nm)颗粒的结果特别重要,因为这是迄今为止 PVOT 操纵的最小直径。等离子体荧光增强测试实验表明,170nm 图案表现出更好的等离子体行为。对于 170nm 平台,其对 Rhodamine-B 染料分子的荧光增强因子达到了 10 倍,而对标记的 DNA 生物分子的增强因子则达到了 3 倍。因此,结果表明这些等离子体平台是高效生物成像和生物传感技术等应用的良好候选者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验