Ren Wei, Zaman Mohammad Asif, Wu Mo, Jensen Michael Anthony, Davis Ronald Wayne, Hesselink Lambertus
Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.
Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
J Appl Phys. 2023 Sep 21;134(11):113104. doi: 10.1063/5.0169565. Epub 2023 Sep 19.
When it comes to simulate or calculate an optoelectronic tweezer (OET) response for a microparticle suspended in a given medium, a precise electrical conductivity (later referred to as conductivity) value for the microparticle is critical. However, there are not well-established measurements or well-referenced values for microparticle conductivities in the OET realm. Thus, we report a method based on measuring the escape velocity of a microparticle with a standard OET system to calculate its conductivity. A widely used 6 m polystyrene bead (PSB) is used for the study. The conductivity values are found to be invariant around 2×10 S/m across multiple different aqueous media, which helps clarify the ambiguity in the usage of PSB conductivity. Our convenient approach could principally be applied for the measurement of multiple unknown OET-relevant material properties of microparticle-medium systems with various OET responses, which can be beneficial to carry out more accurate characterization in relevant fields.
在模拟或计算悬浮于给定介质中的微粒的光电镊子(OET)响应时,微粒精确的电导率(以下简称电导率)值至关重要。然而,在光电镊子领域,对于微粒电导率尚无成熟的测量方法或有充分参考价值的值。因此,我们报告一种基于使用标准光电镊子系统测量微粒逃逸速度来计算其电导率的方法。本研究使用了一种广泛应用的6微米聚苯乙烯珠(PSB)。发现在多种不同水性介质中,电导率值恒定在2×10 S/m左右,这有助于厘清聚苯乙烯珠电导率使用中的模糊之处。我们这种简便的方法原则上可应用于测量具有各种光电镊子响应的微粒 - 介质系统中多个未知的与光电镊子相关的材料特性,这有助于在相关领域进行更准确的表征。