Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
Department of Life Sciences Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria.
Medicina (Kaunas). 2022 Mar 31;58(4):504. doi: 10.3390/medicina58040504.
Nowadays, Artificial Intelligence (AI) and its subfields, Machine Learning (ML) and Deep Learning (DL), are used for a variety of medical applications. It can help clinicians track the patient's illness cycle, assist with diagnosis, and offer appropriate therapy alternatives. Each approach employed may address one or more AI problems, such as segmentation, prediction, recognition, classification, and regression. However, the amount of AI-featured research on Inherited Retinal Diseases (IRDs) is currently limited. Thus, this study aims to examine artificial intelligence approaches used in managing Inherited Retinal Disorders, from diagnosis to treatment. A total of 20,906 articles were identified using the Natural Language Processing (NLP) method from the IEEE Xplore, Springer, Elsevier, MDPI, and PubMed databases, and papers submitted from 2010 to 30 October 2021 are included in this systematic review. The resultant study demonstrates the AI approaches utilized on images from different IRD patient categories and the most utilized AI architectures and models with their imaging modalities, identifying the main benefits and challenges of using such methods.
如今,人工智能(AI)及其子领域机器学习(ML)和深度学习(DL)被用于各种医学应用。它可以帮助临床医生跟踪患者的疾病周期,辅助诊断,并提供合适的治疗选择。所采用的每种方法都可能解决一个或多个 AI 问题,例如分割、预测、识别、分类和回归。然而,目前关于遗传性视网膜疾病(IRDs)的 AI 特征研究数量有限。因此,本研究旨在检查用于管理遗传性视网膜疾病的人工智能方法,从诊断到治疗。本系统评价共使用自然语言处理(NLP)方法从 IEEE Xplore、Springer、Elsevier、MDPI 和 PubMed 数据库中确定了 20,906 篇文章,并包括了 2010 年至 2021 年 10 月 30 日提交的论文。该研究结果展示了针对不同遗传性视网膜疾病患者类别图像的 AI 方法,以及最常用的 AI 架构和模型及其成像方式,确定了使用这些方法的主要优势和挑战。