Biological Design Center, Boston University, Boston, Massachusetts 02215, United States.
Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.
ACS Synth Biol. 2022 Dec 16;11(12):3912-3920. doi: 10.1021/acssynbio.2c00423. Epub 2022 Nov 11.
Systems that allow researchers to precisely control the expression of genes are fundamental to biological research, biotechnology, and synthetic biology. However, few inducible gene expression systems exist that can enable simultaneous multigene control under common nutritionally favorable conditions in the important model organism and chassis . Here we repurposed ligand binding domains from mammalian type I nuclear receptors to establish a family of up to five orthogonal synthetic gene expression systems in yeast. Our systems enable tight, independent, multigene control through addition of inert hormones and are capable of driving robust and rapid gene expression outputs, in some cases achieving up to 600-fold induction. As a proof of principle, we placed expression of four enzymes from the violacein biosynthetic pathway under independent expression control to selectively route pathway flux by addition of specific inducer combinations. Our results establish a modular, versatile, and potentially expandable toolkit for multidimensional control of gene expression in yeast that can be used to construct and control naturally occurring and synthetic gene networks.
能够精确控制基因表达的系统是生物学研究、生物技术和合成生物学的基础。然而,在重要的模式生物和底盘中,很少有可诱导的基因表达系统能够在常见的营养有利条件下同时进行多基因控制。在这里,我们重新利用了来自哺乳动物 I 型核受体的配体结合结构域,在酵母中建立了多达五个正交的合成基因表达系统家族。我们的系统通过添加惰性激素实现了紧密的、独立的多基因控制,并且能够产生强大和快速的基因表达输出,在某些情况下可达到 600 倍的诱导。作为原理验证,我们将来自紫霉素生物合成途径的四种酶的表达置于独立的表达控制下,通过添加特定的诱导剂组合来有选择地改变途径通量。我们的结果建立了一个用于酵母中基因表达多维控制的模块化、多功能且具有潜在可扩展性的工具包,可用于构建和控制天然和合成基因网络。