Suppr超能文献

多模态集成模型用于预测早期轻度认知障碍患者向阿尔茨海默病的转化。

Multimodal ensemble model for Alzheimer's disease conversion prediction from Early Mild Cognitive Impairment subjects.

机构信息

Computer Science, School of Science Engineering, University of Missouri, Kansas City, MO, USA.

出版信息

Comput Biol Med. 2022 Dec;151(Pt A):106201. doi: 10.1016/j.compbiomed.2022.106201. Epub 2022 Oct 30.

Abstract

Alzheimer's Disease (AD) is the most common type of dementia. Predicting the conversion to Alzheimer's from the mild cognitive impairment (MCI) stage is a complex problem that has been studied extensively. This study centers on individualized EMCI (the earliest MCI subset) to AD conversion prediction on multimodal data such as diffusion tensor imaging (DTI) scans and electronic health records (EHR) for their patients using the combination of both a balanced random forest model alongside a convolutional neural network (CNN) model. Our random forest model leverages EHR's patient biometric and neuropsychiatric test score features, while our CNN model uses the patient's diffusion tensor imaging (DTI) scans for conversion prediction. To accomplish this, 383 Early Mild Cognitive Impairment (EMCI) patients were collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Within this set, 49 patients would eventually convert to AD (EMCI_C), whereas the remaining 335 did not convert (EMCI_NC). For the EHR-based classifier, 288 patients were used to train the random forest model, with 95 set aside for testing. For the CNN classifier, 405 DTI images were collected across 90 distinct patients. Nine clinical features were selected to be combined with the visual predictor. Due to the imbalanced classes, oversampling was performed for the clinical features and augmentation for the DTI images. A grid search algorithm is also used to determine the ideal weighting between our two models. Our results indicate that an ensemble model was effective (98.81% accuracy) at EMCI to AD conversion prediction. Additionally, our ensemble model provides explainability as feature importance can be assessed at both the model and individual prediction levels. Therefore, this ensemble model could serve as a diagnostic support tool or a means for identifying clinical trial candidates.

摘要

阿尔茨海默病(AD)是最常见的痴呆类型。从轻度认知障碍(MCI)阶段预测向阿尔茨海默病的转化是一个复杂的问题,已经进行了广泛的研究。本研究集中于个体的 EMCI(最早的 MCI 子集),在多模态数据(如弥散张量成像(DTI)扫描和电子健康记录(EHR))上使用平衡随机森林模型和卷积神经网络(CNN)模型相结合,对 AD 转换预测进行预测。我们的随机森林模型利用 EHR 的患者生物特征和神经心理学测试分数特征,而我们的 CNN 模型则使用患者的弥散张量成像(DTI)扫描进行转换预测。为此,从阿尔茨海默病神经影像学倡议(ADNI)中收集了 383 名早期轻度认知障碍(EMCI)患者。在这个集合中,有 49 名患者最终会转化为 AD(EMCI_C),而其余 335 名患者没有转化(EMCI_NC)。对于基于 EHR 的分类器,使用 288 名患者来训练随机森林模型,其中 95 名用于测试。对于 CNN 分类器,共收集了 405 名来自 90 名不同患者的 DTI 图像。选择了 9 个临床特征与视觉预测器相结合。由于类不平衡,对临床特征进行了过采样,对 DTI 图像进行了扩充。还使用网格搜索算法来确定我们两个模型之间的理想权重。我们的结果表明,该集成模型在 EMCI 向 AD 转化预测方面非常有效(准确率为 98.81%)。此外,我们的集成模型还提供了可解释性,因为可以在模型和个体预测级别评估特征重要性。因此,该集成模型可以作为诊断支持工具或识别临床试验候选者的一种手段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验