Aillis, Inc, Tokyo, Japan.
Japanese Red Cross Medical Center, Tokyo, Japan.
J Med Internet Res. 2022 Dec 23;24(12):e38751. doi: 10.2196/38751.
The global burden of influenza is substantial. It is a major disease that causes annual epidemics and occasionally, pandemics. Given that influenza primarily infects the upper respiratory system, it may be possible to diagnose influenza infection by applying deep learning to pharyngeal images.
We aimed to develop a deep learning model to diagnose influenza infection using pharyngeal images and clinical information.
We recruited patients who visited clinics and hospitals because of influenza-like symptoms. In the training stage, we developed a diagnostic prediction artificial intelligence (AI) model based on deep learning to predict polymerase chain reaction (PCR)-confirmed influenza from pharyngeal images and clinical information. In the validation stage, we assessed the diagnostic performance of the AI model. In additional analysis, we compared the diagnostic performance of the AI model with that of 3 physicians and interpreted the AI model using importance heat maps.
We enrolled a total of 7831 patients at 64 hospitals between November 1, 2019, and January 21, 2020, in the training stage and 659 patients (including 196 patients with PCR-confirmed influenza) at 11 hospitals between January 25, 2020, and March 13, 2020, in the validation stage. The area under the receiver operating characteristic curve for the AI model was 0.90 (95% CI 0.87-0.93), and its sensitivity and specificity were 76% (70%-82%) and 88% (85%-91%), respectively, outperforming 3 physicians. In the importance heat maps, the AI model often focused on follicles on the posterior pharyngeal wall.
We developed the first AI model that can accurately diagnose influenza from pharyngeal images, which has the potential to help physicians to make a timely diagnosis.
流感的全球负担巨大。它是一种主要的疾病,会导致每年的流行,偶尔还会引发大流行。由于流感主要感染上呼吸道,因此通过应用深度学习对咽图像进行分析,有可能诊断流感感染。
我们旨在开发一种使用咽图像和临床信息诊断流感感染的深度学习模型。
我们招募了因流感样症状而就诊于诊所和医院的患者。在训练阶段,我们开发了一种基于深度学习的诊断预测人工智能(AI)模型,用于从咽图像和临床信息预测聚合酶链反应(PCR)确诊的流感。在验证阶段,我们评估了 AI 模型的诊断性能。在额外的分析中,我们比较了 AI 模型与 3 名医生的诊断性能,并使用重要性热图对 AI 模型进行解释。
我们在训练阶段共纳入了 2019 年 11 月 1 日至 2020 年 1 月 21 日期间来自 64 家医院的 7831 名患者,在验证阶段纳入了 2020 年 1 月 25 日至 2020 年 3 月 13 日期间来自 11 家医院的 659 名患者(包括 196 名经 PCR 确诊的流感患者)。AI 模型的受试者工作特征曲线下面积为 0.90(95%CI 0.87-0.93),其灵敏度和特异性分别为 76%(70%-82%)和 88%(85%-91%),优于 3 名医生。在重要性热图中,AI 模型经常关注咽后壁的滤泡。
我们开发了首个能够从咽图像准确诊断流感的 AI 模型,它有可能帮助医生做出及时诊断。