Suppr超能文献

通过经验模态分解探索脑电信号的内在特征用于抑郁症识别

Exploring the Intrinsic Features of EEG Signals via Empirical Mode Decomposition for Depression Recognition.

作者信息

Shen Jian, Zhang Yanan, Liang Huajian, Zhao Zeguang, Dong Qunxi, Qian Kun, Zhang Xiaowei, Hu Bin

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:356-365. doi: 10.1109/TNSRE.2022.3221962. Epub 2023 Jan 31.

Abstract

Depression is a severe psychiatric illness that causes emotional and cognitive impairment and has a considerable impact on patients' thoughts, behaviors, feelings and well-being. Moreover, methods for recognizing and treating depression are lacking in clinical practice. Electroencephalogram (EEG) signals, which objectively reflect the internal workings of the brain, is a promising and objective tool for recognizing and diagnosing of depression and enhancing clinical effects. However, previous EEG feature extraction methods have not performed well when exploring the intrinsic characteristics of highly complex and nonstationary EEG signals. To address this issue, we propose a regularization parameter-based improved intrinsic feature extraction method of EEG signals via empirical mode decomposition (EMD), which mines the intrinsic patterns in EEG signals, for depression recognition. Furthermore, our method can effectively solve the problem that EMD fails to extract intrinsic features. In this method, we first select an appropriate regularization parameter to generate the regularization matrix. Next, we calculate the sum of the matrix products of the IMFs and the regularization matrix and leverage the inverse of this matrix to extract the intrinsic features. The classification results of our method on four EEG datasets reached 0.8750, 0.8850, 0.8485 and 0.7768, respectively. In addition, compared with the iEMD method, our method requires less computational costs. These results support our claim that our method can effectively strengthen the depression recognition performance, and our method outperforms state-of-the-art feature extraction approaches.

摘要

抑郁症是一种严重的精神疾病,会导致情绪和认知障碍,对患者的思想、行为、情感和幸福感产生相当大的影响。此外,临床实践中缺乏识别和治疗抑郁症的方法。脑电图(EEG)信号客观地反映了大脑的内部运作,是一种有前途的客观工具,可用于识别和诊断抑郁症并提高临床效果。然而,在探索高度复杂且非平稳的EEG信号的内在特征时,以前的EEG特征提取方法表现不佳。为了解决这个问题,我们提出了一种基于正则化参数的改进的EEG信号固有特征提取方法,该方法通过经验模态分解(EMD)挖掘EEG信号中的固有模式,用于抑郁症识别。此外,我们的方法可以有效解决EMD无法提取固有特征的问题。在该方法中,我们首先选择一个合适的正则化参数来生成正则化矩阵。接下来,我们计算IMF与正则化矩阵的矩阵乘积之和,并利用该矩阵的逆来提取固有特征。我们的方法在四个EEG数据集上的分类结果分别达到了0.8750、0.8850、0.8485和0.7768。此外,与iEMD方法相比,我们的方法所需的计算成本更低。这些结果支持了我们的观点,即我们的方法可以有效地增强抑郁症识别性能,并且我们的方法优于现有最先进的特征提取方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验