Roskilde University, Dept. Science and Environment, Universitetsvej 1, DK-4000 Roskilde, Denmark.
Technical University of Denmark, Dept. of Biotechnology and Biomedicine, Sølvtofts Plads 224, DK-2800, Kgs. Lyngby, Denmark; University of Copenhagen, Dept. of Drug Design and Pharmacology, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
Curr Opin Biotechnol. 2022 Dec;78:102843. doi: 10.1016/j.copbio.2022.102843. Epub 2022 Nov 12.
The recent breakthrough in all-atom, protein structure prediction opens new avenues for a range of computational approaches in enzyme design. These new approaches could become instrumental for the development of technical biocatalysts, and hence our transition toward more sustainable industries. Here, we discuss one approach, which is well-known within inorganic catalysis, but essentially unexploited in biotechnology. Specifically, we review examples of linear free-energy relationships (LFERs) for enzyme reactions and discuss how LFERs and the associated Sabatier Principle may be implemented in algorithms that estimate kinetic parameters and enzyme performance based on model structures.
全原子蛋白质结构预测方面的最新突破,为酶设计中的一系列计算方法开辟了新途径。这些新方法可能对技术生物催化剂的开发,以及我们向更可持续的工业的转变至关重要。在这里,我们讨论了一种方法,这种方法在无机催化中很常见,但在生物技术中基本上没有得到利用。具体来说,我们回顾了酶反应的线性自由能关系(LFER)的实例,并讨论了如何在基于模型结构估计动力学参数和酶性能的算法中实现 LFER 和相关的 Sabatier 原理。