Diamanti Eleftheria, Oliden-Sánchez Ainhoa, Grajales-Hernández Daniel, Andrés-Sanz Daniel, Fernández-Marín Rut, Padro Daniel, Ruíz-Cabello Jesús, Zangi Ronen, López-Gallego Fernando
Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014 Donostia-San Sebastián, Spain.
Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
Cell Rep Phys Sci. 2025 Jul 16;6(7):102694. doi: 10.1016/j.xcrp.2025.102694.
Self-sufficient heterogeneous biocatalysts (ssHBs), in which enzymes and cofactors are coimmobilized on the same support, provide cofactor regeneration and reduce operating costs. However, the underlying mechanisms remain poorly understood. Here, we present a theoretical model for ssHBs consisting of NAD(P)H-dependent dehydrogenases immobilized on porous agarose-based materials with cofactors coimmobilized through electrostatic interactions via a cationic polymer coating. This model links enzyme activity to cofactor-polymer binding thermodynamics and demonstrates that ssHBs obey the Sabatier principle, where maximum catalytic efficiency is achieved at an intermediate binding strength. Adjustment of pH and ionic strength modulates this interaction, and the resulting activity exhibits the predicted volcano plot. Depending on the reaction conditions, electrostatic complexation is influenced, resulting in the formation of a dense, liquid-like phase inside the particles. Our study directly confirms the Sabatier principle in ssHBs and highlights the crucial role of cofactor binding thermodynamics in optimizing biocatalysis for chemical applications.
自给自足的异质生物催化剂(ssHBs),其中酶和辅因子共同固定在同一载体上,可实现辅因子再生并降低运营成本。然而,其潜在机制仍知之甚少。在此,我们提出了一种ssHBs的理论模型,该模型由固定在多孔琼脂糖基材料上的NAD(P)H依赖性脱氢酶组成,辅因子通过阳离子聚合物涂层通过静电相互作用共同固定。该模型将酶活性与辅因子-聚合物结合热力学联系起来,并证明ssHBs遵循萨巴蒂尔原理,即在中等结合强度下可实现最大催化效率。调节pH值和离子强度可调节这种相互作用,所得活性呈现出预测的火山图。根据反应条件,静电络合会受到影响,导致颗粒内部形成致密的、类似液体的相。我们的研究直接证实了ssHBs中的萨巴蒂尔原理,并强调了辅因子结合热力学在优化化学应用生物催化中的关键作用。