Kapon Yael, Kammerbauer Fabian, Balland Theo, Yochelis Shira, Kläui Mathias, Paltiel Yossi
Institute of Applied Physics, Faculty of Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
Nano Lett. 2025 Jan 8;25(1):306-312. doi: 10.1021/acs.nanolett.4c05035. Epub 2024 Dec 16.
Magnetic skyrmions, topologically stabilized chiral spin textures in magnetic thin films, have garnered considerable interest due to their efficient manipulation and resulting potential as efficient nanoscale information carriers. One intriguing approach to address the challenge of tuning skyrmion properties involves using chiral molecules. Chiral molecules can locally manipulate magnetic properties by inducing magnetization through spin exchange interactions and by creating spin currents. Here, Magneto-Optical Kerr Effect (MOKE) microscopy is used to image the impact of chiral polypeptides on chiral magnetic structures. The chiral polypeptides shift the spin reorientation transition temperature, reduce thermal skyrmion motion, and alter the coercive field locally, enhancing skyrmion stability and thus enabling local control. These findings demonstrate the potential of chiral molecules to address challenges for skyrmion based devices, thus paving the way to applications such as the racetrack memory, reservoir computing and others.
磁斯格明子是磁性薄膜中拓扑稳定的手性自旋纹理,由于其易于操控以及由此产生的作为高效纳米级信息载体的潜力,已引起了广泛关注。一种解决调节斯格明子特性挑战的有趣方法是使用手性分子。手性分子可以通过自旋交换相互作用诱导磁化并产生自旋电流来局部操纵磁性能。在此,利用磁光克尔效应(MOKE)显微镜来成像手性多肽对手性磁结构的影响。手性多肽会改变自旋重取向转变温度,减少热斯格明子运动,并局部改变矫顽场,增强斯格明子稳定性,从而实现局部控制。这些发现证明了手性分子在应对基于斯格明子的器件所面临挑战方面的潜力,从而为诸如赛道存储器、储层计算等应用铺平了道路。