Suppr超能文献

使用深度序贯卷积神经网络从心电图中估算危急值。

Estimating critical values from electrocardiogram using a deep ordinal convolutional neural network.

机构信息

HeartVoice Medical Technology, Hefei, 230027, China.

Department of Electrocardiogram, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

出版信息

BMC Med Inform Decis Mak. 2022 Nov 16;22(1):295. doi: 10.1186/s12911-022-02035-w.

Abstract

BACKGROUND

Critical values are commonly used in clinical laboratory tests to define health-related conditions of varying degrees. Knowing the values, people can quickly become aware of health risks, and the health professionals can take immediate actions and save lives.

METHODS

In this paper, we propose a method that extends the concept of critical value to one of the most commonly used physiological signals in the clinical environment-Electrocardiogram (ECG). We first construct a mapping from common ECG diagnostic conclusions to critical values. After that, we build a 61-layer deep convolutional neural network named CardioV, which is characterized by an ordinal classifier.

RESULTS

We conduct experiments on a large public ECG dataset, and demonstrate that CardioV achieves a mean absolute error of 0.4984 and a ROC-AUC score of 0.8735. In addition, we find that the model performs better for extreme critical values and the younger age group, while gender does not affect the performance. The ablation study confirms that the ordinal classification mechanism suits for estimating the critical values which contain ranking information. Moreover, model interpretation techniques help us discover that CardioV focuses on the characteristic ECG locations during the critical value estimation process.

CONCLUSIONS

As an ordinal classifier, CardioV performs well in estimating ECG critical values that can help people quickly identify different heart conditions. We obtain ROC-AUC scores above 0.8 for all four critical value categories, and find that the extreme values (0 (no risk) and 3 (high risk)) have better model performance than the other two (1 (low risk) and 2 (medium risk)). Results also show that gender does not affect the performance, and the older age group has worse performance than the younger age group. In addition, visualization techniques reveal that the model pays more attention to characteristic ECG locations.

摘要

背景

临界值常用于临床实验室测试中,以定义不同程度的健康相关状况。了解这些值,人们可以快速意识到健康风险,医疗专业人员可以立即采取行动,拯救生命。

方法

在本文中,我们提出了一种将临界值概念扩展到临床环境中最常用的生理信号之一——心电图(ECG)的方法。我们首先构建了一个从常见的心电图诊断结论到临界值的映射。之后,我们构建了一个名为 CardioV 的 61 层深度卷积神经网络,它的特点是有序分类器。

结果

我们在一个大型公共 ECG 数据集上进行了实验,结果表明 CardioV 的平均绝对误差为 0.4984,ROC-AUC 评分为 0.8735。此外,我们发现该模型对于极端临界值和年轻年龄组表现更好,而性别并不影响性能。消融研究证实,有序分类机制适合估计包含排序信息的临界值。此外,模型解释技术帮助我们发现 CardioV 在进行临界值估计时专注于特征 ECG 位置。

结论

作为一个有序分类器,CardioV 在估计心电图临界值方面表现良好,有助于人们快速识别不同的心脏状况。我们为所有四个临界值类别获得了 ROC-AUC 得分均高于 0.8 的结果,并发现极端值(0(无风险)和 3(高风险))的模型性能优于其他两个(1(低风险)和 2(中风险))。结果还表明,性别不影响性能,年龄较大的组比年龄较小的组表现更差。此外,可视化技术表明,该模型更关注特征 ECG 位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b68/9670442/bbff76a9cf72/12911_2022_2035_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验