Suppr超能文献

The potential distribution of Bacillus anthracis suitability across Uganda using INLA.

机构信息

Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, Cambridgeshire, UK.

Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK.

出版信息

Sci Rep. 2022 Nov 19;12(1):19967. doi: 10.1038/s41598-022-24281-8.

Abstract

To reduce the veterinary, public health, environmental, and economic burden associated with anthrax outbreaks, it is vital to identify the spatial distribution of areas suitable for Bacillus anthracis, the causative agent of the disease. Bayesian approaches have previously been applied to estimate uncertainty around detected areas of B. anthracis suitability. However, conventional simulation-based techniques are often computationally demanding. To solve this computational problem, we use Integrated Nested Laplace Approximation (INLA) which can adjust for spatially structured random effects, to predict the suitability of B. anthracis across Uganda. We apply a Generalized Additive Model (GAM) within the INLA Bayesian framework to quantify the relationships between B. anthracis occurrence and the environment. We consolidate a national database of wildlife, livestock, and human anthrax case records across Uganda built across multiple sectors bridging human and animal partners using a One Health approach. The INLA framework successfully identified known areas of species suitability in Uganda, as well as suggested unknown hotspots across Northern, Eastern, and Central Uganda, which have not been previously identified by other niche models. The major risk factors for B. anthracis suitability were proximity to water bodies (0-0.3 km), increasing soil calcium (between 10 and 25 cmolc/kg), and elevation of 140-190 m. The sensitivity of the final model against the withheld evaluation dataset was 90% (181 out of 202 = 89.6%; rounded up to 90%). The prediction maps generated using this model can guide future anthrax prevention and surveillance plans by the relevant stakeholders in Uganda.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30f4/9675733/22eac0e0fee6/41598_2022_24281_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验