Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.
Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; Laboratory for Water Biophysics and Membrane Processes, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; Anton Paar GmbH, Anton-Paar-Str. 20, A-8054 Graz, Austria.
Colloids Surf B Biointerfaces. 2023 Jan;221:113011. doi: 10.1016/j.colsurfb.2022.113011. Epub 2022 Nov 8.
Controlling protein adsorption on biomaterial surfaces requires a thorough understanding of interfacial phenomena. Proteins adhering after implantation influence successful biointegration. Deciphering adsorption mechanisms at biointerfaces is crucial and of high interest. Here, a combination of time-resolved in situ electrokinetic measurements and quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to understand the adsorption phenomena of blood proteins at thin layers of polysaccharide-based biointerfaces. Adsorption kinetics of bovine serum albumin (BSA), fibrinogen (Fg), and γ-globulin (γG) was studied on polydimethylsiloxane (PDMS) coatings functionalised with chitosan-surfactant complex and hyaluronic acid. The functionalised surfaces show a suppressed protein affinity compared to hydrophobic PDMS. Fg exhibits peculiar adsorption behaviour on PDMS, stemming from the highly oriented end-on adsorption with freely moving α chains. BSA demonstrates arbitrary surface orientation, while γG shows preferential surface orientation on PDMS, exposing a higher density of cationic moieties. The combination of the mentioned techniques proved beneficial for the investigation of interactions, orientations, and changes at biointerfaces in real-time. The approach is versatile and promising where research on surfaces and interfaces is in high demand.
控制生物材料表面的蛋白质吸附需要深入了解界面现象。植入后附着的蛋白质会影响生物整合的成功。解析生物界面的吸附机制至关重要,也非常有意义。在这里,采用时间分辨原位动电测量和石英晶体微天平与耗散监测(QCM-D)相结合的方法,研究了多糖基生物界面薄层中血液蛋白质的吸附现象。在壳聚糖-表面活性剂复合物和透明质酸功能化的聚二甲基硅氧烷(PDMS)涂层上研究了牛血清白蛋白(BSA)、纤维蛋白原(Fg)和γ-球蛋白(γG)的吸附动力学。与疏水性 PDMS 相比,功能化表面的蛋白质亲和力降低。Fg 在 PDMS 上表现出特殊的吸附行为,这源于具有自由移动α链的高度定向端到端吸附。BSA 表现出任意的表面取向,而γG 在 PDMS 上表现出优先的表面取向,暴露出更高密度的阳离子部分。所提到的技术组合被证明有利于实时研究生物界面的相互作用、取向和变化。该方法具有通用性和广阔的应用前景,在表面和界面研究方面需求很高。