Baack Leon, Schuy Christoph, Brons Stephan, Horst Felix, Voss Bernd, Zink Klemens, Haberer Thomas, Durante Marco, Weber Uli
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.
Phys Med. 2022 Dec;104:136-144. doi: 10.1016/j.ejmp.2022.10.029. Epub 2022 Nov 17.
Radiotherapy escalating dose rates above 50Gys, might offer a great potential in treating tumours while further sparing healthy tissue. However, these ultra-high intensities of FLASH-RT lead to new challenges with regard to dosimetry and beam monitoring. FLASH experiments at HIT (Heidelberg Ion Beam Therapy Center) and at GSI (GSI Helmholtz Centre for Heavy Ion Research) have shown a significant loss of signal in the beam monitoring system due to recombination effects. To enable accurate beam monitoring, this work investigates the recombination loss of different fill gases in the plane parallel ionisation chambers (ICs).
Therefore, saturation curves at high intensities were measured for the currently used fill gases Ar/CO (80/20) and pure He and also for He/CO mixtures as alternative fill gases. Furthermore, breakdown voltages and ion mobilities were measured in ICs filled with He/CO mixtures. A numerical model for volume recombination in plane parallel ionisation chambers was developed and implemented in Python. This includes a novel simulation method of the space charge effect from the charge carriers in the detector volume and predicts a significant effect on the electric field for high intensity beams.
Even at high intensities the He/CO mixtures allow operation of the ICs at an electric field strength of 2 kVcm or more which reduces recombination to negligible levels at intensities larger than 3 × 10C-ions per second. Our measurements show that added fractions of CO to He decrease the ion mobility in the fill gas but significantly increase the breakdown voltage in the ICs compared to pure He.
将放射治疗剂量率提升至50Gy以上,可能在治疗肿瘤方面具有巨大潜力,同时能进一步减少对健康组织的损伤。然而,这种超高强度的FLASH放疗在剂量测定和束流监测方面带来了新的挑战。海德堡离子束治疗中心(HIT)和亥姆霍兹重离子研究中心(GSI)的FLASH实验表明,由于复合效应,束流监测系统中的信号出现了显著损失。为实现精确的束流监测,本研究调查了平行板电离室(IC)中不同填充气体的复合损失情况。
因此,测量了当前使用的填充气体氩/一氧化碳(80/20)、纯氦以及作为替代填充气体的氦/一氧化碳混合物在高强度下的饱和曲线。此外,还测量了填充氦/一氧化碳混合物的电离室中的击穿电压和离子迁移率。开发了一个用于平行板电离室体积复合的数值模型,并在Python中实现。这包括一种新颖的模拟方法,用于模拟探测器体积内电荷载流子的空间电荷效应,并预测高强度束流对电场的显著影响。
即使在高强度下,氦/一氧化碳混合物也能使电离室在2kV/cm或更高的电场强度下运行,这在强度大于每秒3×10⁹个离子时将复合降低到可忽略不计的水平。我们的测量表明,与纯氦相比,向氦中添加一定比例的一氧化碳会降低填充气体中的离子迁移率,但显著提高电离室中的击穿电压。