Suppr超能文献

0.55T 下肺实质的横向弛豫率。

Lung parenchyma transverse relaxation rates at 0.55 T.

机构信息

Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA.

Siemens Medical Solutions USA, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2023 Apr;89(4):1522-1530. doi: 10.1002/mrm.29541. Epub 2022 Nov 20.

Abstract

PURPOSE

To determine R and transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI.

METHODS

Experiments were performed in 3 healthy adult volunteers on a prototype whole-body 0.55T MRI, using a custom free-breathing electrocardiogram-triggered, single-slice echo-shifted multi-echo spin echo (ES-MCSE) pulse sequence with respiratory navigation. Transverse relaxation rates R and and off-resonance ∆f were jointly estimated using nonlinear least-squares estimation. These measurements were compared against R estimates from T -prepared balanced SSFP (T -Prep bSSFP) and estimates from multi-echo gradient echo, which are used widely but prone to error due to different subvoxel weighting.

RESULTS

The mean R and values of lung parenchyma obtained from ES-MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T  = 61.6 ± 1.7 ms;  = 9.5 ms ± 1.6 ms), respectively. The off-resonance estimates ranged from -60 to 30 Hz. The R from T -Prep bSSFP was 15.7 ± 1.7 Hz (T  = 68.6 ± 8.6 ms) and from multi-echo gradient echo was 131.2 ± 30.4 Hz (  = 8.0 ± 2.5 ms). Paired t-test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The mean R estimate from T -Prep bSSFP was slightly smaller than that from ES-MCSE, whereas the mean and estimates from ES-MCSE and multi-echo gradient echo were similar to each other across all subjects.

CONCLUSIONS

Joint estimation of transverse relaxation rates and off-resonance is feasible at 0.55 T with a free-breathing electrocardiogram-gated and navigator-gated ES-MCSE sequence. At 0.55 T, the mean R of 17.3 Hz is similar to the reported mean R of 16.7 Hz at 1.5 T, but the mean of 127.5 Hz is about 5-10 times smaller than that reported at 1.5 T.

摘要

目的

在 0.55T 下确定健康肺实质的 R 和横向弛豫率。这一点很重要,因为它为 0.55T 肺部 MRI 的新成像方法的设计和优化提供了信息。

方法

在一台原型全身 0.55T MRI 上,对 3 名健康成年志愿者进行了实验,使用了一种带有呼吸导航的定制自由呼吸心电图门控单层面心电门控多回波移频多回波自旋回波(ES-MCSE)脉冲序列。使用非线性最小二乘估计联合估计横向弛豫率 R 和 以及失谐 ∆f。将这些测量结果与 T 准备平衡稳态自由进动(T-Prep bSSFP)中的 R 估计值和多回波梯度回波中的 估计值进行了比较,这些方法虽然应用广泛,但由于亚像素权重不同,容易出现误差。

结果

ES-MCSE 获得的肺实质的平均 R 和 值分别为 17.3±0.7Hz 和 127.5±16.4Hz(T=61.6±1.7ms; =9.5ms±1.6ms),失谐估计值范围为-60 至 30Hz。T-Prep bSSFP 的 R 值为 15.7±1.7Hz(T=68.6±8.6ms),多回波梯度回波的 值为 131.2±30.4Hz( =8.0ms±2.5ms)。配对 t 检验表明,拟议方法与参考方法之间存在显著差异(p<0.05)。T-Prep bSSFP 中的平均 R 估计值略小于 ES-MCSE 中的平均 R 估计值,而 ES-MCSE 和多回波梯度回波中的平均 和 估计值在所有受试者中彼此相似。

结论

在 0.55T 下,使用自由呼吸心电图门控和导航门控 ES-MCSE 序列,横向弛豫率和失谐的联合估计是可行的。在 0.55T 下,平均 R 值为 17.3Hz,与 1.5T 下报告的平均 R 值 16.7Hz 相似,但平均 值为 127.5Hz,约为 1.5T 下报告值的 5-10 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6194/10100111/e7a5d1cb9bd7/MRM-89-1522-g002.jpg

相似文献

1
Lung parenchyma transverse relaxation rates at 0.55 T.
Magn Reson Med. 2023 Apr;89(4):1522-1530. doi: 10.1002/mrm.29541. Epub 2022 Nov 20.
2
Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T.
Neuroimage. 2014 Jan 1;84:1032-41. doi: 10.1016/j.neuroimage.2013.08.051. Epub 2013 Sep 1.
3
Value of transverse relaxometry difference methods for iron in human brain.
Magn Reson Imaging. 2016 Jan;34(1):51-9. doi: 10.1016/j.mri.2015.09.002. Epub 2015 Oct 3.
5
Self-gated cine phase-contrast balanced SSFP flow quantification at 0.55 T.
Magn Reson Med. 2024 Jan;91(1):174-189. doi: 10.1002/mrm.29837. Epub 2023 Sep 5.
6
Rapid simultaneous estimation of relaxation rates using multi-echo, multi-contrast MRI.
Magn Reson Imaging. 2024 Oct;112:116-127. doi: 10.1016/j.mri.2024.07.007. Epub 2024 Jul 4.
8
Lung T * mapping using 3D ultrashort TE with tight intervals δTE.
Magn Reson Med. 2023 Nov;90(5):2001-2010. doi: 10.1002/mrm.29756. Epub 2023 Jun 8.
10
Echo-spacing optimization for the simultaneous measurement of reversible (R2') and irreversible (R2) transverse relaxation rates.
Magn Reson Imaging. 2007 Jan;25(1):63-8. doi: 10.1016/j.mri.2006.09.008. Epub 2006 Nov 13.

引用本文的文献

1
Pulmonary MRI in Newborns and Children.
J Magn Reson Imaging. 2025 May;61(5):2094-2115. doi: 10.1002/jmri.29669. Epub 2024 Dec 6.
2
Single breath-hold volumetric lung imaging at 0.55T using stack-of-spiral (SoS) out-in balanced SSFP.
Magn Reson Med. 2025 May;93(5):1999-2007. doi: 10.1002/mrm.30386. Epub 2024 Nov 28.
3
T1 and T2 measurements across multiple 0.55T MRI systems using open-source vendor-neutral sequences.
Magn Reson Med. 2025 Jan;93(1):289-300. doi: 10.1002/mrm.30281. Epub 2024 Sep 1.
4
Assessment of the Diagnostic Efficacy of Low-Field Magnetic Resonance Imaging: A Systematic Review.
Diagnostics (Basel). 2024 Jul 19;14(14):1564. doi: 10.3390/diagnostics14141564.
6
Replication of the bSTAR sequence and open-source implementation.
Magn Reson Med. 2024 Apr;91(4):1464-1477. doi: 10.1002/mrm.29947. Epub 2023 Dec 3.
7
New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal.
MAGMA. 2024 Feb;37(1):1-14. doi: 10.1007/s10334-023-01123-w. Epub 2023 Oct 30.

本文引用的文献

2
Oxygen-enhanced functional lung imaging using a contemporary 0.55 T MRI system.
NMR Biomed. 2021 Aug;34(8):e4562. doi: 10.1002/nbm.4562. Epub 2021 Jun 2.
3
Bloch modelling enables robust T2 mapping using retrospective proton density and T2-weighted images from different vendors and sites.
Neuroimage. 2021 Aug 15;237:118116. doi: 10.1016/j.neuroimage.2021.118116. Epub 2021 May 1.
4
Free-breathing simultaneous myocardial T and T mapping with whole left ventricle coverage.
Magn Reson Med. 2021 Mar;85(3):1308-1321. doi: 10.1002/mrm.28506. Epub 2020 Oct 20.
5
Echo planar time-resolved imaging with subspace reconstruction and optimized spatiotemporal encoding.
Magn Reson Med. 2020 Nov;84(5):2442-2455. doi: 10.1002/mrm.28295. Epub 2020 Apr 25.
6
2019 American Thoracic Society BEAR Cage Winning Proposal: Lung Imaging Using High-Performance Low-Field Magnetic Resonance Imaging.
Am J Respir Crit Care Med. 2020 Jun 1;201(11):1333-1336. doi: 10.1164/rccm.201912-2505ED.
7
R2 prime (R2') magnetic resonance imaging for post-myocardial infarction intramyocardial haemorrhage quantification.
Eur Heart J Cardiovasc Imaging. 2020 Sep 1;21(9):1031-1038. doi: 10.1093/ehjci/jez306.
8
Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI.
Radiology. 2019 Nov;293(2):384-393. doi: 10.1148/radiol.2019190452. Epub 2019 Oct 1.
9
Pulmonary relaxometry with inversion recovery ultra-fast steady-state free precession at 1.5T.
Magn Reson Med. 2017 Jan;77(1):74-82. doi: 10.1002/mrm.26490. Epub 2016 Oct 19.
10
T shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.
Magn Reson Med. 2017 Jan;77(1):180-195. doi: 10.1002/mrm.26102. Epub 2016 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验