Suppr超能文献

通过浸没式微流控纺丝制备的可溶解海藻酸钙微纤维

Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning.

作者信息

Zhou Tuo, NajafiKhoshnoo Sahar, Esfandyarpour Rahim, Kulinsky Lawrence

机构信息

Mechanical and Aerospace Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA.

Materials and Manufacturing Technology, University of California Irvine, 5200 Engineering Hall, Irvine, CA 92627, USA.

出版信息

Micromachines (Basel). 2023 Jan 26;14(2):318. doi: 10.3390/mi14020318.

Abstract

Fabrication of micro- and nanofibers are critical for a wide range of applications from microelectronics to biotechnology. Alginate microfibers with diameters of tens to hundreds of microns play an important role in tissue engineering and fibers of these diameters are impossible to fabricate via electrospinning and can only be produced via fluidic spinning. Typically, microfluidic spinning based on photopolymerization produces fibers that are not easily dissolvable, while fluidic spinning with chemical cross-linking employs complex setups of microfabricated chips or coaxial needles, aimed at precise control of the fiber diameter; however, fluidic spinning introduces significant cost and complexity to the microfluidic setup. We demonstrate immersed microfluidic spinning where a calcium alginate microfiber is produced via displacement of alginate solution through a single needle that is immersed in a cross-linking bath of calcium chloride solution. The resulting diameter of the fiber is characterized and the fiber diameter and topology of the deposited fiber is related to the concentration of the alginate solution (2 wt%, 4 wt%, and 6 wt%), needle gauge (30 g, 25 g, and 20 g), and the volumetric flow rate of the alginate solution (1 mL/min, 2 mL/min, and 2.7 mL/min). The resulting fiber diameter is smaller than the internal diameter of the needle and this dependence is explained by the continuity of the flow and increased rate of fall of the liquid jet upon its issuing from the needle. The fiber diameter (demonstrated diameter of fibers range from 100 microns to 1 mm) depends weakly on the volumetric flow rate and depends strongly on the needle diameter. It also seems that for a smaller needle size, a greater concentration of alginate results in smaller diameter fibers and that this trend is not evident as the needle diameter is increased. In terms of topology of the deposited fiber, the higher wt% alginate fiber produces larger loops, while smaller wt% alginate solution yields a denser topology of the overlaid fiber loops. These fibers can be dissolved in DMEM/EDTA/DSC solution in 20-30 min (depending on the fiber diameter), leaving behind the hollow channels in the hydrogel matrix. We believe that the demonstrated simple setup of the immersed microfluidic spinning of the calcium alginate microfibers will be useful for creating tissue constructs, including the vascularized tissue implants.

摘要

微米和纳米纤维的制造对于从微电子学到生物技术的广泛应用至关重要。直径为几十到几百微米的海藻酸盐微纤维在组织工程中发挥着重要作用,而这种直径的纤维无法通过静电纺丝制造,只能通过流体纺丝生产。通常,基于光聚合的微流体纺丝产生的纤维不易溶解,而采用化学交联的流体纺丝则需要微加工芯片或同轴针的复杂设置,旨在精确控制纤维直径;然而,流体纺丝给微流体装置带来了显著的成本和复杂性。我们展示了浸入式微流体纺丝,其中通过将海藻酸盐溶液通过一根浸入氯化钙溶液交联浴中的单针进行置换来生产海藻酸钙微纤维。对所得纤维的直径进行了表征,并将沉积纤维的直径和拓扑结构与海藻酸盐溶液的浓度(2 wt%、4 wt%和6 wt%)、针规(30 g、25 g和20 g)以及海藻酸盐溶液的体积流速(1 mL/min、2 mL/min和2.7 mL/min)相关联。所得纤维直径小于针的内径,这种依赖性可以通过流动的连续性以及液体射流从针中喷出时下降速率的增加来解释。纤维直径(所展示的纤维直径范围为100微米至1毫米)对体积流速的依赖性较弱,而对针直径的依赖性较强。似乎对于较小的针尺寸,较高浓度的海藻酸盐会导致直径较小的纤维,并且随着针直径的增加,这种趋势并不明显。就沉积纤维的拓扑结构而言,较高wt%海藻酸盐纤维产生较大的环,而较低wt%海藻酸盐溶液产生覆盖纤维环的更致密拓扑结构。这些纤维可以在20 - 30分钟内溶解于DMEM/EDTA/DSC溶液中(取决于纤维直径),在水凝胶基质中留下中空通道。我们相信,所展示的海藻酸钙微纤维浸入式微流体纺丝的简单设置将有助于创建组织构建体,包括血管化组织植入物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/666a/9965352/a16fdde5b7f8/micromachines-14-00318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验