文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于部分可观测马尔可夫决策过程的光镊操控多个微粒的实时路径规划

POMDP-Based Real-Time Path Planning for Manipulation of Multiple Microparticles via Optoelectronic Tweezers.

作者信息

Liu Jiaxin, Wang Huaping, Liu Menghua, Zhao Ran, Zhao Yanfeng, Sun Tao, Shi Qing

机构信息

Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China.

出版信息

Cyborg Bionic Syst. 2022 Nov 2;2022:9890607. doi: 10.34133/2022/9890607. eCollection 2022.


DOI:10.34133/2022/9890607
PMID:36407009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9652702/
Abstract

With high throughput and high flexibility, optoelectronic tweezers (OETs) hold huge potential for massively parallel micromanipulation. However, the trajectory of the virtual electrode has been planned in advance in most synchronous manipulations for multiple targets based on an optically induced dielectrophoresis (ODEP) mechanism, which is insufficient to ensure the stability and efficiency in an environment with potential collision risk. In this paper, a synchronously discretized manipulation method based on a centralized and decoupled path planner is proposed for transporting microparticles of different types with an OET platform. An approach based on the Kuhn-Munkres algorithm is utilized to achieve the goal assignment between target microparticles and goal positions. With the assistance of a visual feedback module, a path planning approach based on the POMDP algorithm dynamically determines the motion strategies of the particle movement to avoid potential collisions. The geometrical parameters of the virtual electrodes are optimized for different types of particles with the goal of maximum transport speed. The experiments of micropatterning with different morphologies and transporting multiple microparticles (e.g., polystyrene microspheres and 3T3 cells) to goal positions are performed. These results demonstrate that the proposed manipulation method based on optoelectronic tweezers is effective for multicell transport and promises to be used in biomedical manipulation tasks with high flexibility and efficiency.

摘要

光电镊子(OETs)具有高通量和高灵活性,在大规模并行微操纵方面具有巨大潜力。然而,在基于光诱导介电泳(ODEP)机制的多目标同步操纵中,大多数情况下虚拟电极的轨迹是预先规划的,这不足以确保在存在潜在碰撞风险的环境中的稳定性和效率。本文针对基于OET平台的不同类型微粒传输,提出了一种基于集中解耦路径规划器的同步离散操纵方法。利用基于匈牙利算法的方法实现目标微粒与目标位置之间的目标分配。在视觉反馈模块的辅助下,基于部分可观测马尔可夫决策过程(POMDP)算法的路径规划方法动态确定微粒运动的策略,以避免潜在碰撞。针对不同类型的微粒,以最大传输速度为目标对虚拟电极的几何参数进行了优化。进行了不同形态的微图案化以及将多个微粒(如聚苯乙烯微球和3T3细胞)传输到目标位置的实验。这些结果表明,所提出的基于光电镊子的操纵方法对于多细胞运输是有效的,有望以高灵活性和效率应用于生物医学操纵任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/1b6ce692c38a/CBSYSTEMS2022-9890607.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/14699e0bcbf0/CBSYSTEMS2022-9890607.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/b1f000db867d/CBSYSTEMS2022-9890607.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/6775f85a31b8/CBSYSTEMS2022-9890607.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/67bf37f47ef6/CBSYSTEMS2022-9890607.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/e81539e12a33/CBSYSTEMS2022-9890607.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/1b6ce692c38a/CBSYSTEMS2022-9890607.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/14699e0bcbf0/CBSYSTEMS2022-9890607.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/b1f000db867d/CBSYSTEMS2022-9890607.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/6775f85a31b8/CBSYSTEMS2022-9890607.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/67bf37f47ef6/CBSYSTEMS2022-9890607.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/e81539e12a33/CBSYSTEMS2022-9890607.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d4d/9652702/1b6ce692c38a/CBSYSTEMS2022-9890607.006.jpg

相似文献

[1]
POMDP-Based Real-Time Path Planning for Manipulation of Multiple Microparticles via Optoelectronic Tweezers.

Cyborg Bionic Syst. 2022-11-2

[2]
Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.

Electrophoresis. 2008-3

[3]
Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers.

Lab Chip. 2021-11-9

[4]
Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media.

Sci Rep. 2016-3-4

[5]
Accurate Micromanipulation of Optically Induced Dielectrophoresis Based on a Data-Driven Kinematic Model.

Micromachines (Basel). 2022-6-23

[6]
Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments.

IEEE Trans Biomed Eng. 2013-2-1

[7]
Parallel Manipulation and Flexible Assembly of Micro-Spiral Optoelectronic Tweezers.

Front Bioeng Biotechnol. 2022-3-21

[8]
Size-scaling effects for microparticles and cells manipulated by optoelectronic tweezers.

Opt Lett. 2019-9-1

[9]
Experimental investigation of electrostatic particle-particle interactions in optoelectronic tweezers.

J Phys Chem B. 2008-8-14

[10]
A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage.

Micromachines (Basel). 2021-3-6

引用本文的文献

[1]
ODEP-Based Robotic System for Micromanipulation and In-Flow Analysis of Primary Cells.

Cyborg Bionic Syst. 2025-3-6

[2]
Particle-Assisted Optoelectronic Tweezers for Manipulating Single Cells and Microparticles.

Adv Sci (Weinh). 2025-5-5

[3]
Long-Distance Autonomous Navigation of Optical Microrobotic Swarms in Complex Environments.

Adv Intell Syst. 2024-12

[4]
Automated and collision-free navigation of multiple micro-objects in obstacle-dense microenvironments using optoelectronic tweezers.

Microsyst Nanoeng. 2025-3-17

[5]
Magnetic Shaftless Propeller Millirobot with Multimodal Motion for Small-Scale Fluidic Manipulation.

Cyborg Bionic Syst. 2025-3-12

[6]
Green synthesis of copper oxide nanoparticles via Moringa peregrina extract incorporated in graphene oxide: evaluation of antibacterial and anticancer efficacy.

Bioprocess Biosyst Eng. 2024-11

[7]
Double-Modal Locomotion of a Hydrogel Ultra-Soft Magnetic Miniature Robot with Switchable Forms.

Cyborg Bionic Syst. 2024-1-8

[8]
Active Micro/Nanoparticles in Colloidal Microswarms.

Nanomaterials (Basel). 2023-5-21

本文引用的文献

[1]
Label-free purification and characterization of optogenetically engineered cells using optically-induced dielectrophoresis.

Lab Chip. 2022-9-27

[2]
A Learning-Based Stable Servo Control Strategy Using Broad Learning System Applied for Microrobotic Control.

IEEE Trans Cybern. 2022-12

[3]
Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers.

Lab Chip. 2021-11-9

[4]
Reconfigurable multi-component micromachines driven by optoelectronic tweezers.

Nat Commun. 2021-9-9

[5]
Dual-responsive biohybrid neutrobots for active target delivery.

Sci Robot. 2021-3-24

[6]
A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage.

Micromachines (Basel). 2021-3-6

[7]
Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK).

Sci Adv. 2020-8-5

[8]
Label-free characterization of different kinds of cells using optoelectrokinetic-based microfluidics.

Opt Lett. 2020-4-15

[9]
A Review on Optoelectrokinetics-Based Manipulation and Fabrication of Micro/Nanomaterials.

Micromachines (Basel). 2020-1-10

[10]
Optoelectrokinetics-based microfluidic platform for bioapplications: A review of recent advances.

Biomicrofluidics. 2019-9-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索